Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.000 IF 2.000
  • IF 5-year<br/> value: 2.000 IF 5-year
  • CiteScore<br/> value: 1.84 CiteScore
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Short communication
29 Jan 2014
Review status
A revision of this discussion paper for further review has not been submitted.
Short Communication: Earth is (mostly) flat, but mountains dominate global denudation: apportionment of the continental mass flux over millennial time scales, revisited
J. K. Willenbring1, A. T. Codilean2, K. L. Ferrier3, B. McElroy4, and J. W. Kirchner5 1Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd St., Hayden Hall, Philadelphia, Pennsylvania 19104, USA
2School of Earth & Environmental Science, University of Wollongong, Wollongong 2500, New South Wales, Australia
3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
4Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA
5Swiss Federal Research Institute WSL, Birmensdorf, and Department of Environmental Sciences, ETH Zurich, 8092 Zurich, Switzerland
Abstract. Carbon dioxide consumption by silicate mineral weathering and the subsequent precipitation of carbonate sediments sequesters CO2 over geologic timescales. The rate of this carbon sequestration is coupled to rates of continental erosion, which exposes fresh minerals to weathering. Steep mountain landscapes represent a small fraction of continental surfaces but contribute disproportionately to global erosion rates. However, the relative contributions of Earth's much vaster, but more slowly eroding, plains and hills remain the subject of debate. Recently, Willenbring et al. (2013) analyzed a compilation of denudation rates and topographic gradients and concluded that low-gradient regions dominate global denudation fluxes and silicate weathering rates. Here, we show that Willenbring et al. (2003) topographic and statistical analyses were subject to methodological errors that affected their conclusions. We correct these errors, and reanalyze their denudation rate and topographic data. In contrast to the results of Willenbring et al. (2013), we find that the denudation flux from the steepest 10% of continental topography nearly equals the flux from the other 90% of the continental surface combined. This new analysis implies global denudation fluxes of ∼23 Gt yr−1, roughly five times the value reported in Willenbring et al. (2013) and closer to previous estimates found elsewhere in the literature. Although low-gradient landscapes make up a small proportion of the global fluxes, they remain important because of the human reliance, and impact, on these vast areas.

Citation: Willenbring, J. K., Codilean, A. T., Ferrier, K. L., McElroy, B., and Kirchner, J. W.: Short Communication: Earth is (mostly) flat, but mountains dominate global denudation: apportionment of the continental mass flux over millennial time scales, revisited, Earth Surf. Dynam. Discuss., 2, 1-17, doi:10.5194/esurfd-2-1-2014, 2014.
J. K. Willenbring et al.
J. K. Willenbring et al.


Total article views: 1,502 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
952 471 79 1,502 34 26

Views and downloads (calculated since 29 Jan 2014)

Cumulative views and downloads (calculated since 29 Jan 2014)



Latest update: 29 May 2017
Publications Copernicus