HEADWATER SEDIMENT DYNAMICS IN DEBRIS FLOW CATCHMENT: IMPLICATION OF DEBRIS SUPPLY USING HIGH RESOLUTION TOPOGRAPHIC SURVEYS

A. Loye¹, M. Jaboyedoff¹, J. I. Theule² and Frédéric Liébault²

[1]{Institute of Geomatics and Risk Analysis, University of Lausanne, Switzerland}
[2]{Université Grenoble Alpes, Irstea, UR ETNA, Saint-Martin-d’Hères, France}

Correspondence to: A. Loye (alexan2re.loye@gmail.com)

Abstract

Debris flows have been recognized to be linked to amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during winter – early spring season, following a power law distribution for volumes of rockfall events above 0.1 m³, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity),
but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent’s in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

1 Introduction

In steep mountain catchments, rainfall intensity and duration (incl. snowmelt) are insufficient to predict debris flow occurrence, even though initiation of runoff-generated debris flows requires significant water inflow (Van Dine, 1985; Decaulne and Saemundsson, 2007; Guzzetti, 2008). In many cases, the properties of the channel reach which determine the amount of debris that can be entrained can be often more important than the mechanisms of initiation induced by the hydrological/meteorological conditions prior to event (Hungr, 2011; Theule et al., 2015). The frequency and magnitude of debris flow have been recognized to be linked to the amount of material temporarily stored in channel reaches (Van Steijn et al., 1996; Cannon et al., 2003; Hungr et al. 2005), such that hillside sediment delivery, recharging those channels, represents a key factor for the occurrence of debris flows (e.g. Benda and Dunne, 1997; Bovis and Jakob, 1999; Berti et al., 2000). This implies efficient hillslope – channel coupling (Hooke, 2003; Schlunegger et al., 2009; Johnson and Warburton, 2010). Therefore, the rate of sediment supply needs to be considered for predicting debris flow hazards (Rickenmann, 1999; Jakob et al., 2005). However, the difficulty results in quantifying sediment processes and rates and volumes from hillslopes and in-channel debris storage (Peiry, 1990; Zimmermann et al., 1997).

Quantification of overall sediment production and transfer rate has increasingly relied upon multi-temporal digital stereophotogrammetry (Coe et al., 1993; Chandler and Brunsden, 1995; Veyrat-Chavillon and Memier, 2006) and elevation difference from High Resolution Digital Elevation Models (HRDEM) (Smith et al., 2000; Wu and Cheng, 2005; Roering et al., 2009; Theule et al., 2012). In terrain dominated by steep slopes, traditional aerial derived DEMs typically remain inappropriate to study geomorphic processes. Limitations include the poor rendering of small topographic changes (Perroy et al., 2010), poor representation of steep terrain with small curvature radii and data gaps in vertically oriented and overhanging topography. Even on gentler gradients, the sharp breaks in slope, encountered in erosion scars for instance, are often insufficiently modelled by airborne HRDEM, leading to erroneous volume estimations (Bremer and Sass, 2011). This represents a serious drawback in
estimating the sediment budget of steep terrain, where sediment activity comes mostly from rock walls and rugged gullies. Because of these issues, many hill- and rock-slope process studies have used terrestrial laser scanner (TLS) data to build the topographic model (Jaboyedoff et al., 2012). The recent development of long range TLS devices provides an effective means of acquiring high resolution topographic information that can adequately reflect the morphology of steep bedrock-dominated areas. The practical disadvantages in data acquisition inevitably related to ground surveys can be compensated for by flexibility in transport, ensuring a full coverage with minimal zones of topographic shadowing.

This paper presents a quantitative study of sediment recharge and channel response leading to debris flow events, using 3-D digital terrain models acquired by TLS. This is illustrated on the Manival (French Alps), a torrent that experiences runoff-generated debris flow almost every year (Péteuil et al., 2008). The surveys captured hillslope processes and sediment dynamics occurring throughout the system including the tributary channels down to the main torrent and were performed periodically over 16 months. The spatio-temporal variability of debris production and subsequent transport and storage of sediment are analysed on a seasonal time scale, in order to discuss the debris supply dynamics and the implications in debris flow initiation. This study also complements a parallel investigation regarding the controls on debris flow erosion and bedload transport in the Manival’s torrent (Theule et al. 2015).

2 Study site

2.1 General setting

The 3.9 km2 Manival catchment located at the edge of the Chartreuse massif (France) (Fig. 1) has a rugged, 1200 m relief watershed, resulting from deep headward entrenchment (Gidon, 1991). The topography consists of a narrowly-confined head and a steep-sided colluvium-filled valley, delimited in the west by a series of rock walls and scree-mantled deposits separated by rock couloirs, and in the east by steep rock and talus slopes divided by gullies. The lithology ranges in age from late Jurassic to early Cretaceous (Fig. 2) (Charollais et al., 1986). In the heart of the basin, thick sequences of calcareous marl interbedded with layers of marl predominate. Towards the ridge, the bedrock evolves progressively from stratified to more massive limestone. The valley sides are formed by the fold limbs of an anticline, where secondary folding and minor faults induce local variations in structure (Gidon, 1991). This
tectonic setting and the varying stratigraphic competency have strongly influenced the
topographic development of the catchment, providing a dynamic geomorphic environment
producing considerable runoff as a response to heavy frequent rainstorms (Fig. 3).

2.2 Characteristics of the headwater sediment dynamics

The contemporary geomorphic activity contributing to the torrent’s recharge with debris is
concentrated exclusively in the headwater, where no remnant glacial deposits are found
(Gruffaz, 1997). In the upper catchment, large old rock deposits flooring the west side
hillslope (Fig. 4) have dramatically influenced the bottom topography, and thus the channel
network, resulting in a conjunction of four first-order debris flow channels deeply incised
down to the bedrock in several reaches. The upper catchment can therefore be subdivided in
five subcatchments in terms of sediment recharge (Fig. 2). Bed entrenchment is now
constrained by check dams. However, lateral erosion still occurs episodically by flooding and
debris flow scouring.

The style of sediment production and delivery is somewhat different throughout the
headwater, according to the local morphology and the lithologic and structural setting. The
major geomorphic processes, identified preliminarily by observations from aerial photographs
and field investigations, were initially characterized in a map (Fig. 4) describing the spatial
distribution of geomorphic features and sediment transfer processes contributing to debris
recharge in the first-order channels. The west and upper sides are dominated by rockfall.
Large rock collapses delimited by persistent joints occur due to the progressive degradation of
the slope underneath (Loye et al., 2011). Where the slope gradient allows scree and soil
development, erosion scars can be observed; sediment sources are remobilized from discrete
shallow landslides. Depending on the location and size, rockfall can reach the channels
directly, or accumulate on slopes or in ravines, before being subsequently routed to high-order
segments by a combination of gravitational and hydrological processes. Towards the east, the
erosion seems to be more progressive through the formation of gullies (Loye et al., 2012).
Near the ridge, the slopes display mostly talus and scree deposits lightly covered with
vegetation, whereas the hillside below exposes steepened rock slopes. Many active erosion
scars can be observed. They contribute debris into gullies and talus slope deposits that are
subsequently entrained in channels downslope.
Historical records of debris flows since the 18th century show a frequency of 0.3 events per year that reached the apex of the fan (Brochot et al, 2000). The largest event deposited approximately 60,000 m3. However, the torrent experiences smaller fluxes of debris (<1,000 m3) usually not reported in archives. Such events can occur 2-3 times per year, when initiated by intense runoff (Veyrat-Charvillon, 2005). Volumes of debris deposited in the sediment trap for the last 25 years are on average 2,200 m3/yr, reaching a maximum of 7,000 m3/yr in 2008 (RMT service).

3 Methods and data processing

3.1 Topographic monitoring using TLS

The terrain was surveyed with an ILRIS-3D laser scanner (Optech Inc.). This device provides a range up to 1.2 km for 80% reflectivity surface and the instrumental precision is about 7 mm/100 m range for both distance and position (Optech Inc.). The overall coverage of the upper catchment with TLS point clouds required 50 scans using a 20% surface overlap. These scans were collected over a 5-day period from 9 individual viewpoints to ensure a full 3-D rendering of the topography. Particular attention was given to irregular regions and major breaks in slope, such as rock couloirs and deep-cut gullies. Using multiple scanning locations allowed us to limit shadow zones and increase the point cloud density of the scanned area. A series of 4 surveys was performed for each season during 2009 and one extra survey was performed in July 2010 to analyse the effect of the preceding winter period (Table 1). The monitoring setup remained similar for all surveys. Post-processing of the TLS raw data was done using Polyworks (InnovMetric). Erroneous points and vegetation were filtered manually, ensuring a total control of the removed data to preserve a high density of points in topographic features with small radii curvature. Although this procedure is time consuming, (semi-)automatic approaches to filter vegetation accurately still remain in a stage of development for dissected mountain morphology (Brodu and Lague, 2012). Each of the multiple scans of a survey were merged to one another using common tie points of permanent topographic features and the dataset was processed as 12 standalone sub-datasets, rather than all processed together. Given the size of the monitored area, dividing the point cloud into smaller datasets avoids propagation of inaccuracy through large co-registered scan series. ICP (iterative closest point) algorithms (Besl and McKay, 1992), that minimize the distance
between two point clouds, were used to determine the best alignment of subsets surveyed at different time in order to obtain the best co-registration within a time series. The same procedure was applied between subset point clouds and a commercial airborne laser scanner derived point cloud (mean density: 6.9 pts/m²) acquired in June 2009 to place the TLS data into the standard Lambert projection coordinate system used in France. The initial survey point cloud data was set as the surface model of reference. Each successive survey was georeferenced onto this reference using ICP. The topographic change occurring between two successive surveys are too localized to influence the global co-registration within two survey data subsets consisting of millions of data points, hence the alignment accuracy. More details about multiple scans registration techniques and point cloud time series comparison can be found in Oppikofer (2009). The generated surface produced by the above procedure has a point spacing ranging from 2.5 to 18 cm according to the distance of acquisition. A maximum range of about 800 m was reached on the top peak of the catchment with a point cloud density of 25 pts/m². The surface coverage of our surveys represents 84% of the deforested area under investigation (Table 2).

3.2 Topographic change identification and characterization

The active geomorphic features within two successive datasets were identified on a point by point basis using the short distance neighbouring point search algorithm (Bitelli et al., 2004) that computes in 3-D the shortest difference vectors between the points of two datasets. The vector sign indicates the net change direction of topography, i.e. surface of erosion or deposition. A set of points (cluster) was considered as active if at least 8 adjacent points of similar sign displayed an absolute difference above the limit of detection (LoD, see Section 3.4). Each active feature was outlined visually using the point cloud of difference (Fig. 5a). The point clusters of both survey datasets, which correspond to the topography of the active features, were extracted according to their spatial extend coordinates and each detected geomorphic feature was labelled as follows:

1. **Rock slope erosion**, characterised by rockfall/-slides;
2. **Hillslope erosion**, specifically the reworking of loose/compacted debris on slope, in gullies and channels;
3. **Deposition**, including material aggradation initiated by both rock slope failure (new production) and remobilisation of debris.
Using the images captured by the TLS integrated camera, clusters of points not corresponding to geomorphic process activity, such as snow melt, were ignored.

3.3 Volume computation of each geomorphic feature

As the volume of active features cannot be directly computed by differencing TLS point datasets, the active features of two successive point clouds must be interpolated into continuous surfaces (DEM). Gridded model (or raster) is regarded as being the most effective type of model to use for irregularly distributed datasets which sometimes contain few or no points (El-Sheimy et al., 2005), as can be the case for rockfall and erosion scars. The algorithm chosen for interpolation of the DEM has little influence on the final result, as TLS data provide an extremely dense coverage of the detected objects (Anderson et al., 2005). So, they were interpolated using linear inverse distance weighting (Burrough and McDonnell, 1998) and generated in a regular grid separately. Grid spacing and direction of interpolation were designed in a specific way for each feature: the coordinate system of reference was replaced by a local orthogonal system where the x-y axes represent the average plane of topography nearby (Fig. 5b). This new reference frame was defined using eigen-value decomposition of the covariance matrix of the point cloud of reference (Shaw, 2003). Interpolating the surface elevation in the direction of local topography allows the generation of a realistic DEM independent of slope steepness and thus, a close realistic representation of topography in the case of overhanging features. The cell size was defined according to the point spacing distribution of both datasets. A series of tests revealed that setting the grid spacing at 68% of the cumulative frequency distribution of point spacing provides a continuous surface reconstruction while keeping a high degree of detail from the point cloud. This ensures an accurate volume computation of geomorphic features. The volume was computed as the sum of the cell difference in elevation (both positive and negative) between the successive DEM. Absolute cell differences lying below a given threshold (see section 3.4) were not considered. This volume computation using local deterministic method of interpolation and an adaptive gridding approach was developed in the Matlab numerical computing environment.

3.4 Point cloud accuracy and limits of detection of the geomorphic features

A reliable identification of erosion and deposition features requires the definition of a LoD, where the change of elevation between successive point clouds can be considered as real as
opposed to noise. Each TLS data point has theoretically a unique precision depending on the
range and laser incidence angle (Buckley et al., 2008). In practice, the individual point
precision of a scan can be assumed to model a surface with a global uniform uncertainty,
considering the very high point density (Abellan et al., 2009). Given the homogeneity of
surface error, and considering that the distance between sequential points at a position (x,y)
should tend to zero, the accuracy of TLS data can be estimated by substituting the precision of
each data point by a singular measurement of the error associated with the entire point
distribution across the surface (Lane et al., 2003). Hence, the uncertainty related to both scans
registration and point cloud georeferencing, the instrumental error included, was defined by
the standard deviation of the distance (\(\sigma_d \)) between the points (Fig. 6). The LoD was therefore
set at \(2\sigma \) of the co-georeferencing and corresponds to the 95 % confidence limit (Table 3).
Comparison with the approach considering the error propagation for all uncertainties
associated with each point cloud, and assuming a normal distribution of the error in distance
(Taylor, 1997), shows that the uncertainties considered here are consistent.

In the case of volume computation, information on elevation uncertainty associated with each
point cloud survey needs to be extended to the DEM on a cell by cell basis. For any grid cell
(i,j) generated by the interpolation of adjacent points \(p \) with independent elevation, the
uncertainty of a cell elevation can be considered as the standard deviation (\(\sigma_e \)) of the data
points elevation, where \(\sigma_{e_{i,j}} = \sigma_e / \sqrt{n} \) according to the equation of standard error of the
mean, \(n \) being the number of points to define the cell elevation. The elevation uncertainty for
each cell in a DEM of difference is then expressed by:

\[
\sigma_{\Delta z_{i,j}} = \sqrt{\left(\sigma_{1z_{i,j}}\right)^2 + \left(\sigma_{2z_{i,j}}\right)^2}.
\]

The volume uncertainty is then calculated by summing up the derived volume uncertainty of
each cell of the feature as follow:

\[
\Delta V_{\text{feature}} = a \left[\sum_{i=1}^{n_c} \sum_{j=1}^{n} \left(\sigma_{\Delta z_{i,j}}\right)^2 \right], \text{ with } a = \text{cell area.}
\]

The smallest detectable volume is about \(10^{-3} \) m\(^3\) (10 x 10 x 10 cm) (Table 3), but can reach up
to 0.006 m\(^3\) (25 x 25 x 10 cm) depending on the point spacing at maximum range.
Topographic change detection and volume computation accuracy depend not only on the
quality of the TLS data, such as point density and post-processing related inaccuracy. It also
depends on the complexity of the surface geometry, like in our case, by integrating the range in position of all data points defining each grid cell value of a feature. Monitoring the hillslope activity is also limited by the ability of the process to create a distinct topographic change. Consequently, the deposition of individual small rockfalls was not always detected, as detached rock masses fragment into smaller pieces that are below the LoD. A similar issue was observed for erosion processes within debris. Nevertheless, most of the material accumulation could be related to upslope landslides or scouring. The sediment budgets were therefore kept in volumetric units, as they are commensurate for a consistent analysis. They were not converted to mass, although this would make more sense for comparing hillslope processes and rock slope yields. Such conversion requires an accurate density value of each surface process, whose approximations introduce additional unknowns. Deposition related to rock failures may therefore be slightly overrepresented in the sediment balance, although this could be partly compensated for by a limited detection of small features.

3.5 Sediment budgets of the Manival torrent

Monitoring of the coarse sediment transfer has been performed all along the main torrent channel to the sediment trap located downstream on the alluvial fan. The in-channel storage change was established after every noticeable flow event, using the morphological approach based on cross-section survey techniques (Ashore and Church, 1998), and the volume of sediment deposited in the sediment trap was measured by TLS survey differencing. Sequential volumes of recharge enable to study the influence of debris supply from the production zone through the seasons. The characteristics and observational analysis of this event-based monitoring was documented in details in Theule et al. (2012, 2015) and is therefore not described any further.

3.6 Estimation of debris production rate

A rate of debris production for the study period is obtained from the total volume of rock slope erosion. An objective estimation can be deduced by characterising the cumulative distribution of rockfall volumes with a power law as follows (Gardner, 1970):

\[N(v > V) = aV^{-b}. \]

\[(3) \]

\(N \) is the rockfall frequency for a volume \(v \) greater than \(V \), \(a \) and \(b \) are constants. \(a \) depends on the study size and on rock slope properties, whereas \(b \) tends to be rather site independent.
(Dussauge-Peissier et al., 2002; Dewez et al., 2011). Considering that rock slope process activity causing rockfall does not fluctuate much over time, the inventory analysis can be used to infer the frequency of occurrence of larger events. This is done by integrating the rockfall frequency derivative \(n(v) = \frac{dN}{dv} \) over the range of potential volumes. Estimation of the total volume \(V_t \) per unit time that can be expected in average over a longer period of observation is therefore expressed by (modified from Hantz et al. (2002)):

\[
V_t = \int_{n(V_{min})}^{n(V_{max})} V_{min} \int V \times V^{-b+1} dV = -ab \int V^{-b} dV = \left[-\frac{ab}{(1-b)} V^{1-b} \right]_{V_{min}}^{V_{max}}.
\] (4)

The goodness of fit of the power law was evaluated with the \(\chi^2 \) test (Taylor, 1997) and the standard deviation of value \(a \) and \(b \) were determined with the maximum likelihood estimate (Aki, 1965). The erosion rates are assessed by dividing \(V_t \) with the surface prone to rockfall.

4 Results: Hillslope process activity monitoring

4.1 1st monitoring period (April 2009 – August 2009)

The topographic changes recorded from July to August 2009 did not show any relevant geomorphic activity (only a few small rockfalls). These results were therefore merged with the preceding monitoring period. Rock slope activity is dominated by individual small rockfalls distributed throughout the upper catchment. Only few events exceed 1 m\(^3\), such that contributions in terms of debris production are marginal in most parts of the catchment (Fig. 7). The most significant geomorphic activity was located almost exclusively in the major gullies of Baure and Grosse Pierre ravines, and consists essentially of debris scouring of a few 100 m\(^3\) re-deposited further down. Material re-entrainment was also observed in several other smaller gullies, but their volumes are relatively small. The rock couloirs of the Genievre subcatchment and the scar of the old rock deposit barely showed any geomorphic activity. The channels displayed a net incision (-636 m\(^3\) ± 43) in the upper reaches. Bedload aggradation remains very low (+90 m\(^3\) ± 6). Below the upper confluence, the channel trunk exhibits a mixed pattern of zones of erosion (-60 m\(^3\) ± 2), such as gravel-wedge scouring, and zones of re-deposition of entrained material (+80 m\(^3\) ± 4) induced by bedload transport.
4.2 2nd monitoring period (September 2009 – November 2009)

Rock slope activity remains similar in spatial extent and volumes to the previous survey period, but rockfall frequency is higher (Fig. 8). Hillslope process activity was more widespread on the east side, but more localized on the western valley walls, while the rock couloirs showed no geomorphic activity. In the upper headwater, material reworking was concentrated almost exclusively in the steep tributary gullies. They displayed scouring of a relatively large volume (-357 m3 ± 12). Deposition features along the thalweg were almost inexistent (+18 m3 ± 1.3). In the south-east, not only the Baure Ravine (net erosion: -61 m3 ± 8), but the whole series of hillside gullies exhibited signs of activity, such as erosional segments alternating with deposition. On scree slopes, several minor areas with erosional rills and their associated debris deposits were observed, some of them reaching the channel trunk (+42 m3 ± 2). Such small hillside debris flows were probably triggered by sediment entrainments within the rills, as no evidence of sliding at their head was observed. The channels show a net erosion upstream (-482 m3 ± 18), whereas continuous incisions were more pronounced in the Manival channel (-443 m3 ± 16) and also in the Roche Ravine (-40 m3 ± 3). Deposition zones were almost completely absent (15 m3 ± 1.3). Towards the upper confluence, the lower segments of Manival channel exhibited continuous zones of aggradation (97 m3 ± 6) that were scoured on one side. This morphology is characteristic of closed-process debris flow levees and run-up zones beside the incised channel bed. Below the upper confluence, channel bed cut (-40 m3 ± 2) and fill (+16 m3 ± 1) was sparse and concentrated at the junction with hillside gullies. Such a pattern of bed reworking demonstrates the connectivity of the Baure gully series with the channel trunk.

4.3 3rd monitoring period (November 2009 – July 2010)

This period showed an important increase of rock slope erosion, both in frequency and magnitude, resulting from the occurrence of large slope failures and enhanced localized rockfall activity, for instance in rock walls made of calcareous marl situated directly above the Manival (2035 m3 ± 39) and the Roche Ravine (256 m3 ± 17) channels (Fig. 9). Most of debris collapses supplied the channel directly; the rest was temporary deposited in breaks in slope. The lower headwater part showed a great fluctuation as well (Genievre: 116 m3; Grosse Pierre: 145 m3). At the top of the Baure Ravine, 816 m3 ± 25 of rock fragments contributed substantially to recharge the sediment storage at gully head. Below, debris infilling was continuously scoured. A 1170 m3 ± 18 rockslide is responsible for a large channel infill in the
Manival subcatchment. Several other smaller rockfalls contributed to the recharge of tributary gullies and scree hollows. In the Roche Ravine, debris deposits were sparse, because rockfall remained of low magnitude on average (571 events < 1 m3), although frequency was high (578 events). The large debris infill at the channel head was caused by two erosion scars in the gullies (270 m3 ± 14 and 65 m3 ± 4). In the rock couloirs of the Geniève subcatchment, a significant accumulation of material from landslides and rockfalls was observed (remnant volume: 204 m3 ± 13), taking into account that the hillslope erosion represents 450 m3 (± 14).

In the Grosse Pierre Ravine, 343 m3 ± 17 of debris were accumulated at the rock couloir outlet, recharging the scree slope above the channel head. In the Col du Baure, relatively large aggradation in the lower part of tributary gullies was observed (remnant volume: +142 m3 ± 2), resulting from material entrainment. Several debris slides were also detected on scree slopes, without any contact with the channel trunk.

The upper channel-reaches were clearly depositional, as a consequence of large slope failures. The Manival channel showed a continuous zone of remnant accumulation of 948 m3 (± 18) of which a portion was carried along downstream as bedload. Towards the confluence, erosion dominated (-487 m3 ± 19) over deposition (+25 m3 ± 3). In the Roche Ravine, a continuous zone of erosion in the scar of the old rock deposit produced debris accumulation mostly on the slope. But a landslide of 190 m3 ± 9 reached the channel. Overall, aggradation was observed all along the channel head (+148 m3 ± 18) and scouring was limited (-65 m3 ± 4). From the confluence downstream, the channel behaviour is dominantly erosional (-97 m3 ± 4) almost without any aggradation (+3 ± 0.3 m3).

4.4 Rock slope production inventory

Over the 16 months, 1,866 rockfalls with volumes ranging from 10^{-4} to 10^3 were recorded. This yields a total of 3,575 m3 ± 30 and an erosion rate of 3.1 mm/yr, given the topographic surface area of rock faces. The inventory follows a power law (Fig. 10) with a 99 % confidence level for events larger than 3 m3 (χ^2 value = 17.3). For events larger than 1 m3, the power law is accepted at the 95 % confidence level (χ^2 value = 5.89). Both threshold volumes provide a b-value close to 0.81 ± 0.06. Considering only the volumes above 10 m3 (25 events) gives a b-value of 0.76. Below 0.1 m3, the observed frequency deviated clearly from power law regime until the roll-over reaches an approximately constant rate for the smallest volumes. According to our inventory, rockfall of more than 1 m3 are expected 153 ±
11 times per year on average. The largest event (1,170 m3) occurs every two years, and the one year return period rockfall has a volume of approximately 465 m3. Considering only these classes of volumes of the inventory (see Table 6), the rock slope production reaches a rate of $3,678$ m3/yr ± 210 (4 mm/yr ± 0.3).

4.5 Torrent in-channel storage changes

Two debris flows with multiple surges and several remarkable bedload transport events were observed in the main torrent during the survey period (Theule et al., 2012). A debris flow occurred on the 25th August 2009, caused by a short duration rainstorm. The volume of sediment eroded in the torrent (5,232 m3 ± 136) is equivalent to the volume that was re-deposited in both the torrent itself and the sediment trap (5,072 m3 ± 125), suggesting that the majority of entrained material was stored in the torrent (Table 4). Sediment input from the headwater can be considered as marginal. Before that, no significant torrent activity was observed, despite a series of rainfall events with low to moderate intensity. In September 2009, a long period of moderate rainfall intensity caused material reworking by bedload transport all along the torrent. However, no sediment was supplied to the sediment trap. A net gain of storage in the headwater was therefore inferred. In October, a succession of low intensity rainfall events triggered sediment transport in the torrent that accumulated in the sediment trap with a volume of at least 302 m3 ± 36. The sediment budget indicates clearly a recharge of 229 m3 ± 31, a transfer of debris that was stored mostly in the distal part of the torrent. Throughout the winter, a gradual incision was observed all along the torrent resulting from frequent periods of low intensity rainfall as well as snowmelt. Due to maintenance (dredging), the sediment trap was disturbed and no reliable data was available. No sign of significant sediment activity was detected anyway. A new debris flow on June 6th deposited 3,320 m3 ± 176 in the sediment trap. This time, a certain supply of sediment from the headwater was observed (~ 270 m3). This event was followed by series of intense rainfall events without much reworking in the distal part, suggesting that any significant transfer occurred into the torrent downstream. The in-torrent storage changes and estimated recharge budgets are shown for each monitoring period in Figure 11.
5 Synthesis

The overall transfer dynamics, from debris source zone to the apex of the fan, is illustrated in Figure 12. The volumes detected during the 16-month study period reveal a net export of 3,378 m3 ± 361 of sediment from the headwater to the main torrent (Table 5). The overall rock slope yield is 3,575 m3 ± 30, for a volume of erosion reaching 3,129 m3 ± 150 on the hillside and 1,809 m3 ± 92 in the channel complex. Volume of deposition, induced from both debris production and material reworking, yields a total volume of 5,135 m3 ± 251, of which only 1,382 m3 ± 56 (27 %) is linked to the channel complex. In the main torrent, the sediment transfer was relatively large (~20,000 m3; net storage change -4950 m3 ± 118) and essentially related to the occurrence of two debris flows (Theule et al., 2012), depleting significantly the in-torrent sediment storage of the distal parts (entrainment zone). Material deposited in the sediment trap for the survey period yields 6075 m3 ± 45. During the autumn, bedload transport of hundreds of m3 contributed to sediment recharge throughout the torrent.

In the spring-midsummer period, the hillside sediment budget yields a total rock slope production of 99 m3 ± 6, for a volume of erosion of -547 m3 ± 50 and deposition of +408 m3 ± 35 (Table 5). This suggests that about 238 m3 ± 61 of material was supplied the channel complex, originating almost exclusively from material re-entrainment in gullies (Fig. 13). The sediment budget of the channels indicates a significant reduction in storage (-487 m3 ± 44), comprising large and continuous incisions (-636 m3 ± 43) in the upper reaches and material aggradation (+149 m3 ± 11) in the lower reaches resulting mostly from zones of transient re-deposition. This results a recharge of the torrent of +726 m3 ± 103 for this survey period.

During the late summer - autumn season, the total volume of hillside erosion is of -640 m3 ± 27, due to a widespread scouring of the tributary gullies located east and southeast of the headwater (Fig. 14). The total volume of rock slope production (50 m3 ± 3) and deposition (+182 m3 ± 12) remained low. Overall, the sediment budget indicates, that the hillslope contributed about 510 m3 ± 30 of sediment to the channel reaches (Table 5). The sediment budget of the channels yields -522 m3 ± 20 of erosion for +127 m3 ± 13 of deposition. This is characterized by bedload reworking in both low-order and trunk channels, and a progressive transfer of +904 m3 ± 51 of material into the torrent.

During winter - spring 2010, a total deposition volume of +3,163 m3 ± 147 is recorded on the hillside, for an eroded volume of -3,129 m3 ± 150. A relatively large production of debris (3,424 m3 ± 89) is observed (Table 5). The net sediment balance on the hillside yields to a
supply of \(+2,203 \, \text{m}^3 \pm 187\) of sediment into the channels, and the net sediment balance for the channel complex indicates an increase of in-channel sediment storage of \(+455 \, \text{m}^3 \pm 47\), for a total volume of deposition of \(1105 \, \text{m}^3 \pm 36\) and erosion of \(651 \, \text{m}^3 \pm 29\) due to large portions of bed scouring in the downstream reaches. Sediment transfer into the torrent is \(1749 \, \text{m}^3 \pm 419\) (Fig. 15).

6 Discussion

6.1 Debris supply through rock slope production

Debris production from rock walls shows a strong seasonal pattern. The great majority of recorded rock instabilities in both magnitude (95%) and frequency (75%) occurred during the cold period. Previous studies of the calcareous cliffs near Grenoble, which have a similar morphotectonic context, revealed that freeze-thaw cycles are the main triggering factor of rockfall (Frayssines et al., 2006). Ice jacking can cause microcrack propagation leading to failure (Matsuoka and Sakai, 1999). Along the eastern ridge, the bedrock surface is often highly fractured, suggesting frost shattering. The spatial pattern of rockfall strongly suggests also a tectonic-lithological influence that can be explained by differential erosion between the successive limestone and marl beds. In the rock wall series on the west side, the monoclinal configuration of the bedding, combined with a strong difference of competency between stratigraphic sequences, give rise to overhanging formation highly susceptible to failure. On the east side, the bedding is mostly cataclinal and approaches dip-slope, depending on the slope. Rock failures initiated by planar sliding on bedding planes were observed.

The observed debris production follows a power law distribution in a range covering at least 3 orders of magnitude \([10^0-10^3]\). The exponent \(b\) is slightly higher than the average value reported for the Grenoble cliffs \([0.4-0.7]\) (Hantz et al., 2011), but is in agreement with other short inventories covering a lower range of volume \([10^2-10^3]\) (Hungr et al., 1999; Dussauge et al., 2003). Inventories dominated by small volumes tend to increase the \(b\)-value, compared to the ones covering rather large volumes (Stark and Hovius, 2001). Above 100 \(\text{m}^3\), the deviation from the power law may be attributed to the short period of sampling for events of such large magnitude. The roll-over encountered towards small volumes results most likely in the under-detection of the number of events. This sampling bias being far above the minimum volume of detection \((0.006 \, \text{m}^3)\), therefore another behaviour characterizing the failure of
Small volumes cannot be excluded. This may take the form of a physical erosion process that differs from the one influencing larger instabilities, which are controlled primarily by the geometrical and geomechanical properties of the rock mass (Selby, 1993; Sauchyn et al., 1998), and tectonic weakening (Cruden, 2003; Coe and Harp, 2007). As observed here, low magnitude rockfall events represent a low proportion of overall debris supply, even though they vary locally from 1 or 2 orders of magnitude in volume over time. The total amount of sediment available is only significantly influenced by high magnitude instabilities (Fig. 16).

Previous sediment budgets derived from topographic measurement using stereophotogrammetry estimated the highest erosion rates over an average of 40 years to range from 10.8 mm/yr to 17.8 mm/yr in the headwater (Veyrat-Charvillon and Memier, 2006). Given the large uncertainty of the approach, and the fact that they measured the hillslope and thalweg geomorphic activity, these values are broadly consistent with the erosion rate derived here from a short period rockfall inventory, by assuming the possible occurrence of rockslide magnitudes \([10^6-10^7]\). Considering that the power law is valid for larger slope failures, a 7,500 m\(^3\) event can be expected every 10 years, and a 120,000 m\(^3\) event every 100 years. The average debris production ranges between 5,587 ± 241 to 12,903 ± 305 m\(^3\)/yr, assuming a maximum potential erosion of \(10^5\) and \(10^7\) m\(^3\) respectively, over several centuries (Table 6). No historical Manival rockslide exists to support this estimation. The large old rock deposit (~6.1 Mm\(^3\)) of the upper catchment is the largest detected event, but it may have formed from several rock collapses. Rockfall inventory of the Grenoble cliffs reports volumes smaller than 10\(^5\) m\(^3\) for the last century, and 10\(^7\) m\(^3\) since the 17\(^{th}\) century (Hantz et al., 2003]. Such a magnitude is also likely at the Manival. A mean rate of rock slope erosion of approximatively 10 mm/yr. (10,000 m\(^3\)/yr) can be therefore expected in the upper catchment over the century.

Upstream from the Manival channel, scouring of debris slopes and scree hollows triggered by rock slope production accounted for about 40% of the net erosion recorded during the autumn period, and 25% in the Baure Ravine over the entire study period. The spatial pattern of geomorphic work showed, that hillslope process activity was observed principally in gullies and scree slopes situated directly below active rock walls. The dominant mode of debris supply in the Manival headwater is therefore highly episodic, implying a great spatial heterogeneity in sediment recharge rates.
6.2 Debris supply through hillslope activity

As rock slope activity was very limited from spring to autumn, hillslope geomorphic activity dominated sediment recharge during this period. Until the end of August, hillside gullies and low-order channels remain almost inactive in terms of sediment delivery. Conversely, the autumn period was characterized by a general increase in the intensity of geomorphic activity. Continuous scouring and the relative paucity of deposition features from hillside gullies as well as clear incisions and micro debris flows in channel reaches indicate that mobilized material was almost entirely entrained downstream by runoff. For the entire area, the hillside contribution represents on average a volume 5 times larger than the volume that was observed in spring and summer, and channel bed reworking was of much larger magnitude as well.

During winter-spring 2010, the total volume of deposition recorded on the hillside significantly exceeds the rate of deposition recorded so far, resulting from the huge increase of debris production that can be attributed to the winter according to observations carried out in the preceding spring. Hillslope and gully erosion remain on average comparable to the volumetric transfer of sediment observed in the preceding autumn, implying a clear connectivity.

These negative sediment balances in all sediment cascade components suggests a very high degree of connectivity between hillside and channels in autumn, and hillside fan deposits observed in early-spring along low-order channel banks reflect an effective hillslope-channel coupling. This differs from effective sediment transfer occurring mostly during the summer (e.g. Berger et al, 2011; Cavalli et al, 2013).

6.3 Sediment recharge of the torrent

The sediment input, back-calculated from the in-torrent storage changes, is consistent with the net sediment output recorded from the headwater for the first two survey periods. In the torrent, the morphological monitoring that started in July revealed almost no sediment recharge (< 70 m3) and is coherent with observations made in the summer in the upper catchment. The headwater sediment output must have accumulated before, probably mobilized as bedload by common runoff events in spring. In autumn, both budgets are approximately equal (1018 ± 84 m3 against 904 m3 ± 51), considering that few segments between both entities are missing, and that both budgets were in volumetric units, despite having different sediment densities. The morphological budget indicates that the torrent
experienced a net recharge in the distal part, and emphasizes the clear connectivity from the production zones to the torrent, as mentioned before. In the 3rd survey period, the headwater sediment balance indicates a net export of debris (1749 m$^3 \pm 199$), whereas the morphological monitoring detected no significant volumes of debris entering the main torrent. Even the recharge (sediment input, Fig.11) measured during the June debris flow events (< 600 m3) remains far below the transfer of sediment recorded upstream in the headwater. This discrepancy may result from material deposition occurring in the non-monitored segments at the headwater outlet. But field studies did not confirm this. The analysis of past series of sediment budgets performed in the upper Manival catchment (Veyrat-Charvillon, 2005) reveals, that the spring-early summer time currently exhibits a period of recharge following a phase of discharge within a short time lapse depending on the hydrometeorological and snow melt conditions. The most reasonable explanation is therefore the relatively long time interval between measurements, such as the successive reworking of bedload transport suppressing the cut and fill pattern, and masking the short term behaviour of sediment transfer in the torrent. This is a well-known issue when working with channelized hillslope processes (Fuller et al., 2010). Although this monitoring aspect concerns the topographic changes recorded by TLS in the headwater as well, geomorphic activity, such as micro debris flows and continuous channel bed degradation, strongly suggests phases of sediment recharge preceding the debris flow events, which would be consistent with other studies (e.g. Brayshaw & Hassan, 2009; Marchi et al., 2002, Bennett et al., 2012).

6.4 Possible causes of seasonal fluctuations in debris supply

The Manival headwater experienced low geomorphic activity through the summer, and consequently low sediment recharge of the torrent, even though rainstorms were of sufficiently high intensity to trigger debris flows of significant magnitude in torrent. Considerations of the temporal pattern of sediment transfer and the analysis of erosion features, like alternating areas of scouring and infilling in gullies, suggest that runoff still exerts an important role on the headwater sediment dynamics. A clear relation between sediment transfer magnitude and precipitation remains complex however (Fig. 3), as often the case in mountainous catchments (VanSteijn, 1996; Bovis and Jakob, 1999; Pelfini and Santilli, 2008). The enhanced geomorphic activity observed in the hillside of several headwater subsystems, for instance during the autumn period, induced a simultaneous yet highly heterogeneous response in their channel reaches. A significant increase of bed incision
and debris flow similar reworking was observed in the upper reaches of the Manival subcatchment, implying an important sediment transfer. In contrast, the activity of other channel reaches was reduced by half, e.g. in Roche Ravine, or even remained geomorphically much less active with only little sediment recharge.

Considering that meteorological conditions were similar, this opposite behaviour may only be explained by a certain depletion of debris availability. This reduction of sediment yield can come not only within a supply-limited regime of the contributing area (Jakob et al., 2005; Glade, 2005), but also from the fact that check dams, like bedrock dominated reaches, inhibit channel bed incision. Hence, the sediment storage has to be refilled either from the contributing hillside or from upstream mass movement. A similar observation can be drawn from the Grosse Pierre Ravine sediment budget, whose gully downslope remained completely disconnected from the head of the subcatchment over the whole study period at least. Although this ravine is very steep and incises the large old rock deposits, no geomorphic work was observed, resulting most likely from the absence of debris supply from upstream. Hillside sediment delivery seems therefore to be clearly a limiting factor to sediment yield from low to high-order channels, and thus to the sediment recharge rate of the debris flow torrent downstream. As the occurrence of bedload transport and micro debris flows is controlled predominantly by the availability of sediment, even very intense rainstorm derived runoff does not automatically lead to significant transfer of sediment from the hillside to low-order channels in the case of material depletion.

But still, this behaviour is somehow equivocal, considering the fact that the transport capacity of ephemeral stream runoff and sheetwash related to high intensity rainstorms are larger than the one generated by low intensity long duration rainfall; above all, when gully material (like in the Manival) can be characterized as coarse and poorly sorted rockfall fragment derived debris. Lenzi et al. (2003) interpreted the annual fluctuation in sediment yield as the effect of sediment source destabilization or reactivation following a high-magnitude flow event, which facilitates material entrainment by subsequent runoff. Johnson and Warburton (2006) refer to the influence of sediment source characteristic in the control of hillslope sediment discharge. The explanation may be, that the 25th August rainstorm dramatically altered the debris sources in a way that the autumn rainfalls, although of lower intensity but longer flood time, were able to transfer sediment downslope, for instance by saturating debris deposits in the long term. Excess pore-fluid pressure in debris deposits can persist for days to weeks after sediment
emplacement (Major and Iverson, 1999; Major 2000), making debris deposits geotechnically less stable.

Although depending on the local geomorphological setting, such as slope gradient, local topographic hollow, degree of convergence (Reneau et al., 1990; Stock & Dietrich, 2006; Mao et al., 2009), these observations tend to show that long lasting rainfall reduces the stability of the coarse surface layer that armour the gullies and scree slopes. This in turn effects the amount of debris supply from the hillside, despite the flow capacity and sediment availability.

7 Conclusions

This investigation of a yearly pattern of sediment dynamics underlines that the seasonal cycle of sediment discharge from the headwater supplying the Manival torrent with debris consisted of two phases of recharge: one phase in early spring, linked to enhanced debris production and runoff conditions; a second phase in autumn, during long periods of rainfall. Furthermore, the occurrence of the debris flow events was made conditional on a net sediment delivery toward the torrent.

Overall, the torrent effectiveness seems to be controlled early in the year, from winter to spring, by sediment production and later in the year by the ability of hydrological effects to weaken the remnant debris sources, with debris availability being only one of the limiting factors at the Manival torrent. The rate of sediment delivery, directly recharging both hillside and low-order channels, is controlled by high magnitude slope failure of moderate frequency which occurred mostly during winter time. Consequently, material re-entrainment concentrates locally in specific tributary gullies. The delivery of sediment to the torrent may be related to the hydrometeorological conditions since the last rainstorm, rather than to flow capacity directly. Low-order reaches contribute significantly to the sediment delivery mechanism of the catchment headwater, by controlling storage and routing processes. Hence, the recharge threshold required for a new debris flow to occur at the Manival depends primarily on the short-term debris supply, partly derived from the rate of rock slope sediment production and partly derived from mobilizing debris on the hillside. The rate of sediment recharge in the torrent is however greatly intermittent, since production and entrainment are both highly stochastic processes. This regime of headwater sediment delivery may have been identified in other nearby mountain environments, but very little literature exists (Alvarez and
Garcia Ruiz, 2000; Veyrat-Charvillon, 2005; Berger et al., 2011), that has explored in sufficient detail the time scale of sediment discharge, e.g. on a seasonal basis.

Debris flow magnitudes have so far been mostly determined based on volume estimates derived from past events, reducing the susceptibility analysis to the known history. Monitoring of the in-storage changes within the torrent linked to the debris supply can help to improve knowledge on the recharge threshold leading to debris flow activity, and therefore their prediction. According to the rock slope production observed in this study, 10,000 m3/yr of debris supplying the headwater channels can be expected in Manival over a century. Although the multiplicity of sediment sources and mode of transfer operating at different spatial and temporal scales, the pattern of processes governing the sediment dynamics can be considered precisely on a seasonal basis using TLS techniques. Therefore maximum sediment discharges from the torrent system can be specified. Without direct measurement of the rate of sediment flux and of the coupling between hillslope and channel processes, this cannot be rigorously determined. The timing of sediment budget monitoring is however a crucial aspect for their later interpretation.

Acknowledgements

The authors would like to thank their colleagues at IGAR and IRSTEA Grenoble (ex. CEMAGREF), in particular A. Pedrazzini and M.-H. Derron for their valuable comments during the preparation of this publication. This study was funded entirely by the University of Lausanne, except for the event-based cross-section surveys that was funded by the Pôle Grenoblois d’étude et de recherche pour la prévention des risques naturels. The ONF-RTM38 is acknowledged for making the access to the upper Manival Catchment easier.
References

Table 1. Dates of TLS acquisitions. Note that for the analysis, the 2nd survey was merged with the 1st one (see text for details).

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Start and end dates of Survey</th>
<th>Period ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>01/04/2009 - 12/07/2009</td>
<td>MP1</td>
</tr>
<tr>
<td>2nd</td>
<td>12/07/2009 - 30/08/2009</td>
<td>merged with MP1</td>
</tr>
</tbody>
</table>
Table 2. TLS data and surface coverage characteristics of the 5 subcatchments from MP1. As the view points and parameters of acquiring remained similar, the values are essentially the same for all surveys.

<table>
<thead>
<tr>
<th>Subcatchment name</th>
<th>Surface1</th>
<th>Lidar Data Survey</th>
<th>Scanned area1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total [km2]</td>
<td>Vegetation cover [%]</td>
<td>Number of points</td>
</tr>
<tr>
<td>Col du Baure</td>
<td>0.29</td>
<td>43.0</td>
<td>37,625,236</td>
</tr>
<tr>
<td>Roche Ravine</td>
<td>0.30</td>
<td>20.5</td>
<td>43,736,412</td>
</tr>
<tr>
<td>Manival</td>
<td>0.35</td>
<td>9.1</td>
<td>40,192,976</td>
</tr>
<tr>
<td>Grosse Pierre</td>
<td>0.08</td>
<td>9.0</td>
<td>9,703,449</td>
</tr>
<tr>
<td>Genievre</td>
<td>0.35</td>
<td>26.6</td>
<td>19,886,472</td>
</tr>
<tr>
<td>Production zone</td>
<td>1.36</td>
<td>22.7</td>
<td>151,144,545</td>
</tr>
</tbody>
</table>

1 topographic surface area
Table 3. Registration and georeferencing standard deviations (in cm) of the position uncertainty on a point by point basis that was used to derive the LoD at 95% confidence interval and subsequently to detect topographic changes down to a certain minimum volume of geomorphic features.

<table>
<thead>
<tr>
<th>Sub-catchment name</th>
<th>2σ co-registered [cm]</th>
<th>2σ co-georeferencing (LoD) [cm]</th>
<th>2σ Taylor uncertainty$^{(1)}$ [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survey 1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td>Col du Baure</td>
<td>1.9</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Roche Ravine</td>
<td>3.2</td>
<td>2.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Manival</td>
<td>4.6</td>
<td>4.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Grosse Pierre</td>
<td>4.1</td>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Genière</td>
<td>3.7</td>
<td>3.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>

$^{(1)}$ pc = point cloud used to generate the map (point cloud) of difference in 3D
Table 4. Sediment budget (in m3) of the Manival torrent established after noticeable events using the morphological approach after Theule et al. (2012). The torrent recharge (sediment input) is estimated from in-storage changes in channels and volumes deposited in the sediment trap (output).

<table>
<thead>
<tr>
<th>Monitoring Period</th>
<th>Survey dates in the torrent</th>
<th>Sediment Output</th>
<th>Storage Change</th>
<th>Channel Erosion</th>
<th>Channel Deposition</th>
<th>Sediment Input</th>
<th>Total sediment Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>#1 06/07/2009 - 28/08/2009</td>
<td>1873 ±62</td>
<td>-2034 ±559</td>
<td>5232±136</td>
<td>3199±63</td>
<td>0-63</td>
<td>0 - 63</td>
</tr>
<tr>
<td></td>
<td>#2 30/08/2009 - 07/10/2009</td>
<td>0</td>
<td>789±84</td>
<td>1409±31</td>
<td>2197±55</td>
<td>736-942</td>
<td>934 - 1102</td>
</tr>
<tr>
<td></td>
<td>#3 08/10/2009 - 12/11/2009</td>
<td>302±36</td>
<td>-73±66</td>
<td>1546±36</td>
<td>1473±31</td>
<td>198-260</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>#4 13/11/2009 - 01/06/2010</td>
<td>580±45</td>
<td>-580±81</td>
<td>1961±45</td>
<td>1372±36</td>
<td>0-36</td>
<td>174 - 844$^{(1)}$</td>
</tr>
<tr>
<td></td>
<td>#5 02/06/2010 - 08/06/2010</td>
<td>3320±176</td>
<td>-3052±272</td>
<td>7658±178</td>
<td>4606±93</td>
<td>0-537</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#6 09/06/2010 - 06/10/2010</td>
<td>819±46</td>
<td>-608±82</td>
<td>2246±46</td>
<td>1637±36</td>
<td>174-246</td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ The TLS survey MP3 lasted until 08/07/2010; #6 were not considered for the analysis of the sediment budgets.
Table 5. Overall headwater sediment budget recorded during the three survey periods and net sediment balance of the 16 months of monitoring (Sediment budgets for each catchment subsystem are detailed in the supplement).

<table>
<thead>
<tr>
<th>Monitoring Period</th>
<th>Volume Total [m3]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hillside</td>
<td>Channel</td>
<td>Headwater</td>
</tr>
<tr>
<td>1st monitoring</td>
<td>Rockfall</td>
<td>99.4 ±5.9</td>
<td>99.4 ±5.9</td>
</tr>
<tr>
<td></td>
<td>Deposition</td>
<td>408.2 ±15.4</td>
<td>149.2 ±10.9</td>
</tr>
<tr>
<td></td>
<td>Erosion</td>
<td>547.2 ±19.5</td>
<td>636.4 ±43.3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>-238.3 ±61.2</td>
<td>-487.2 ±44.7</td>
</tr>
<tr>
<td>2nd monitoring</td>
<td>Rockfall</td>
<td>50.5 ±3.0</td>
<td>50.5 ±3.0</td>
</tr>
<tr>
<td></td>
<td>Deposition</td>
<td>181.8 ±12.2</td>
<td>127.2 ±8.0</td>
</tr>
<tr>
<td></td>
<td>Erosion</td>
<td>639.8 ±27.1</td>
<td>522.5 ±19.4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>-508.5 ±29.9</td>
<td>-395.3 ±23.4</td>
</tr>
<tr>
<td>3rd monitoring</td>
<td>Rockfall</td>
<td>3424.9 ±89.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deposition</td>
<td>3163.5 ±147.9</td>
<td>1105.5 ±36.4</td>
</tr>
<tr>
<td></td>
<td>Erosion</td>
<td>1941.6 ±72.8</td>
<td>630.8 ±28.8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>-2203.0 ±187.4</td>
<td>454.7 ±46.5</td>
</tr>
<tr>
<td>Total monitoring</td>
<td>Rockfall</td>
<td>3574.7 ±97.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deposition</td>
<td>3753.5 ±195.6</td>
<td>1381.9 ±55.6</td>
</tr>
<tr>
<td></td>
<td>Erosion</td>
<td>3128.5 ±149.4</td>
<td>1809.7 ±91.3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>-2949.8 ±264.9</td>
<td>-427.8 ±106.9</td>
</tr>
</tbody>
</table>
Table 6: Rock slope debris production rate estimated from the inventory analysis using power law distribution of volume for potential rockfall (fig. 10).

<table>
<thead>
<tr>
<th>Class of volume in m³</th>
<th>$10^{-3} - 10^2$</th>
<th>$10^2 - 10^3$</th>
<th>$10^3 - 10^4$</th>
<th>$10^4 - 10^5$</th>
<th>$10^5 - 10^6$</th>
<th>$10^6 - 10^7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured frequency (per year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured frequency</td>
<td>143 (112.5)</td>
<td>742 (583.7)</td>
<td>789 (620.7)</td>
<td>168 (132.2)</td>
<td>19 (14.95)</td>
<td>3 (2.36)</td>
</tr>
<tr>
<td>Calculated frequency</td>
<td>36990 ±4366</td>
<td>5621 ±581</td>
<td>854 ±86</td>
<td>130 ±9.6</td>
<td>19.7 ±1.2</td>
<td>3.0 ±0.14</td>
</tr>
<tr>
<td>Cumulative Measured Frequency</td>
<td>1467</td>
<td>1355</td>
<td>772</td>
<td>152</td>
<td>19</td>
<td>3.1</td>
</tr>
<tr>
<td>Cumulative Calculated Frequency</td>
<td>43619 ±5043</td>
<td>6629 ±677</td>
<td>1007 ±97</td>
<td>153 ±11</td>
<td>23 ±1.58</td>
<td>3.5 ±0.198</td>
</tr>
<tr>
<td>Fallen volume per year [m³]</td>
<td>102 ±12</td>
<td>155 ±16</td>
<td>236 ±19</td>
<td>358 ±26</td>
<td>544 ±32</td>
<td>827 ±37</td>
</tr>
<tr>
<td>Total fallen volume per year [m³]</td>
<td>298 ±43</td>
<td>454 ±59</td>
<td>689 ±79</td>
<td>1047 ±105</td>
<td>1592 ±136</td>
<td>2419 ±172</td>
</tr>
<tr>
<td>Cliff area</td>
<td>826804 m² (only the topographic rock slope surface)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion rate [mm]</td>
<td>0.36 ±0.05</td>
<td>0.54 ±0.07</td>
<td>0.83 ±0.1</td>
<td>1.3 ±0.1</td>
<td>1.9 ±0.2</td>
<td>2.9 ±0.3</td>
</tr>
</tbody>
</table>
Figure 1. (Inset) Map of the study area; the Manival catchment is in solid red and the impressive debris fan is hatched. (Main) Aerial view of the Manival catchment, draped over a topographic model; sediment supply is concentrated in the headwater (production zone) as erosion activity from the middle and lower catchment is not connected to the torrent (zone of transfer) (image@Aerodata International Surveys; DEM@Irstea UR ETNA).
Figure 2. Geological map of the catchment headwater (production zone), after Gidon (1991) and location of first-order debris flow channels (thick blue line) and their respective watersheds (white lines). For the ease of analysis, the Roche Ravine and Col du Baure subcatchments in the east side were further subdivided according to their gully complex (dotted white lines).
Figure 3. Maximum rainfall intensity over the monitoring period measured by a rain gauge located at the top of the torrent (see Figure 4) and calculated for a 5 minutes time interval. The mean annual precipitation is about 1,500 mm in the headwater of the Manival (modified from Loye, 2013).
Figure 4. Geomorphic process map (contour interval: 20m) illustrating the spatial pattern of sediment sources and transfer in the first-order channel complex. Note the impressive rock collapse deposits now crossed by four first-order debris channels. Their bed incision is strongly constrained by series of check dams (marked as black “T” on the map), but erosion scars all along the deposit suggest that the reaches are still subject to lateral erosion.
Figure 5. (A) 3-D detection and (B) schematic illustration of the extraction and volume computation method of an individual active feature provided by two successive point cloud datasets.
Figure 6. Distribution of the distance between two survey point clouds after the process of georeferencing using ICP procedure. The distance approaches normal distribution with a zero mean, showing that errors generated by multiple scan registration and point cloud survey georeferencing are Gaussian, random and independent. Data are given in meters.
Figure 7. Geomorphic activity revealed by comparing the topographic differences of the two successive TLS surveys operated in April and August 2009. The sediment budgets are detailed for each subcatchment in Fig. 13.
Figure 8. Geomorphic activity revealed by comparing the topographic differences of the two successive TLS surveys operated in August and November 2009. The sediment budgets are detailed for each subcatchment in Fig. 14.
Figure 9. Geomorphic activity revealed by comparing the topographic differences of the two successive TLS surveys operated in November 2009 and July 2010. The sediment budgets are detailed for each subcatchment in Fig. 15.
Figure 10. Cumulative volume distribution of the rockfall observed during the first (A), the second (B), the third monitoring period (C) and over the entire study time of 16 months (D). For each dataset, the power law is fitted for volumes larger than 0.1 m3. Below this threshold volume, the distribution exhibits a roll-over that progressively reaches an almost constant frequency for the smallest detected volumes.
Figure 11. Torrent in-channel storage changes per unit length and sediment budgets of cumulative volumes transported in the torrent from the headwater outlet to the sediment trap downstream for each monitoring period (MP). The torrent recharge (sediment input) was estimated given the in-storage change and the volume deposited in the sediment trap (see Table 4 for details on values) (modified from Theule et al., 2012).
Figure 12. (A) Overall sediment budget and (B) net sediment balance for each monitoring period showing the overall transfer dynamics from debris source zone in the headwater to the apex of the fan through the torrent observed during the period of investigation.
Figure 13. Overall headwater sediment budget observed during the 1st monitoring period revealing the sediment dynamics through the spring-summer season and the net balance of sediment recharge in the downstream torrent for the several months preceding the August 2009 debris flow.
Figure 14. Overall headwater sediment budget observed during the 2nd monitoring period revealing the sediment dynamics and the net balance of sediment recharge in the downstream torrent during the autumn.
Figure 15. Overall headwater sediment budget observed during the 3rd monitoring period revealing the sediment dynamics through the winter-spring and the net balance of sediment recharge in the downstream torrent for the period preceding the June 2010 debris flow.
Figure 16. (continuous lines) Erosion rate as function of size of events for a certain volume of production (potential maximum volume $V_{1...9}$), considering that rockfall volume distribution observed at Manival follows power law behaviour (Table 6). (dash lines) Contribution of each class of volumes to the erosion rate showing the significant effect of large slope failures. For a maximum volume eroded of 3,600 m3/yr (V_1), the 1,000 m3 rockfall event contributes 60%, while events less than 100 m3 induce less than 20% of erosion, although of much higher frequency; a 100,000 m3 rockslide would generate 70% of a total of material eroded of 500,000 m3 (V_7) over a century.