We received two careful and thorough reviews from anonymous reviewers. Below are their comments (in black) and our response to their comments (in blue). We have addressed all concerns raised by the reviewers.

Anonymous Referee #1

Received and published: 22 August 2016

Schmidt et al. present an interesting study in which they aim to evaluate the effects of human activity on long-term apparent erosion rates calculated from measurements of in-situ 10Be collected from river sediments in a nested sampling scheme across three watersheds in Yunnan, China. The authors choose three watersheds differing in size across covarying gradients of elevation, precipitation, channel steepness and land use. The authors present the results of correlation and regression analyses of in-situ 10Be-derived long-term apparent erosion rates calculated using the CRONUS-Earth online calculator with topographic (basin average slope, normalized channel steepness and relief/elevation), climatic (mean annual precipitation), and land use/land cover variables.

Through this analysis, the authors present results which suggest that in-situ 10Be derived apparent erosion rates are related predominantly to topographic variables in two of the three watersheds (Yongchun and Weiyuan) which are not dominated by human land-use), while apparent erosion rates are not correlated with topographic variables (and instead correlated with area in agricultural land use) for a third watershed (Nankai) which was heavily dominated by human land-use. Further regression analysis suggests that human land-use may play a secondary but not controlling role in the Weiyuan watershed (which lies in the middle of the land use gradient from most intensive human land-use (Nankai) to least intensive human land use (Yongchun).

The authors conclude that in-situ 10Be apparent erosion rates can be significantly affected by human land-use at the basin scale and suggest caution to researchers attempting to derive long term apparent erosion rates in watersheds which have undergone significant human land-use change, are not large enough to buffer the effects of land-use change on sediment composition, and are heavily disturbed.

This is a nicely packaged study that is worthy of publication. Although the results are not surprising (there are some watersheds and basins in the midwestern and south-eastern United States, for example, where a significant amount of the current surficial material is actually subsoil exposed due to the effect of highly erosive historical land use practices (Piedmont, Corn Belt Plains, Driftless Area)), they are important to consider for researchers who are considering constructing studies of long-term apparent erosion rates. However I do have a few suggestions which may assist the authors in improving the manuscript.

General comments: 1. In section 5.3 of the discussion, lines 11-15, the authors present anecdotal evidence from field observations that "much of the landscape mapped as grassland and shrubland is actually tea and rubber plantations...", and thus this land use category is actually reflective of agricultural land use. This is an absolutely critical observation which allows the reader to better interpret the data from the scatterplots presented in Figure 6, and it came to me as a surprise that it is buried in the discussion. I believe instead that this observation should be presented
much earlier in the manuscript, perhaps in the methods section. Do the authors have any point data or observations associated with this that they could include in the supplementary information? Have the authors attempted to sum fraction of agricultural land use and fraction of shrub/grassland (which would presumably represent "total" agricultural land use) and plot that against 10Be derived erosion rates? Is that relationship stronger or weaker than the relationships of erosion rates with agricultural land use and shrub alone? If stronger, it would suggest that the sum of agricultural land use (regardless of management practice) is important. If weaker it might suggest that the erosive effects of tea and rubber plantations on the uplands alone are extremely important in understanding the effects of these different land uses on apparent erosion rates. Additionally, although the relationship between %shrub and erosion rate in positive for Nankai, it seems to be negative for Yongchun. Does this imply that the land cover classified as shrub/grassland in Yongchun is truly shrub, whereas the land cover classified as shrub/grassland in Nankai is in fact tea and rubber plantations? Do the authors have any observations to assist in resolving this question? I believe any further interpretations that the authors can provide in this matter will greatly assist the readers in understanding the results presented, especially when attempting to link portions of the results/discussion to the Figures and Table. Table 1 should be presented with the results and moved out of the discussion.

The observation about tea and rubber plantations is made in the Field Sites section (section 2). We have expanded this a bit and made it more obvious. This is done in lines 13-14 of page 4. This is based on field observations, which is now clarified. The other watersheds do not have the same “problems” with the land use mapping – field observations suggest that forests are mostly forest, shrub/grassland is mostly shrub/grassland and so on. Fraction agricultural land does not have a significant correlation with erosion in the Nankai watershed ($R^2 = 0.14$, $p = 0.17$), possibly because the agricultural land is primarily on very flat areas where we have few samples due to difficulty in locating the river channel. This also could be explained by the reviewer’s hypothesis – the upland agriculture (the shrub/grassland) is the big eroder, not the downstream terraced agriculture. We have added this more nuanced perspective to the discussion in lines 26-29 of page 8.

When we add the fraction agricultural land and the fraction shrub/grassland together for Nankai, the correlation is not significant ($R^2 = 0.17$, $p = 0.13$). Similarly, although a multiple regression of erosion as a function of agricultural and grass/shrubland increases increases slightly ($R^2 = 0.55$) compares to a single regression against just grass/shrubland, the p value for the independent agriculture parameter is not significant ($p = 0.50$). Adding forest to the regression, for a multivariable linear regression with three independent parameters increases the regression very little ($R^2 = 0.56$) and with three independent parameters and only 15 sample sites, the p values for all variables are not significant ($p > 0.63$). In addition, there is a complication that the three variables co-vary. Urban area is only a tiny fraction of the study site and otherwise, land is classified as forested, grass/shrub, or agricultural. Thus, when we start to combine the three primary land use categories of the watersheds, we lose the differences between watersheds.

2. I understand the authors’ intent in Figure 7, however it took quite a bit of time to interpret. It may just be my own perspective, however I believe that interpretability may be improved by
putting the erosion rate and slope data points into separate portions of the figure? Additionally, the text in P7, Lines 3-4 states "...we observe a non-linear decrease in erosion rates as mean basin ksn increases..." (again, based on the figure, I believe the authors intend to write "median basin ksn"). However, in looking at Figure 7C, I would argue that (at least in my interpretation), erosion rates appear to show a peaked non-linear distribution as median basin ksn increases, not a non-linear decrease only.

This is an excellent observation. We have revised the figure and fixed the explanation on line 15 of page 7.

3. The authors spend a significant amount of text discussing correlation numbers, however I could not find text describing which correlation method was used (pearson, kendall, spearman, etc...). Also, it might be helpful (whether in the main manuscript or supplementary material) to include a table of correlations of the variables with each other so that the reader could better put the patterns seen in the scatterplots of figure 6 in context.

We have added this explanation to the methods (digital data, section 3) on lines 28-29 of page 5. We also added table S6 to show correlations among other variables.

4. In the manuscript text, the authors integrate regression statistics into the results and discussion to support some of their major conclusions. Some of these regressions (from the text) appear to have been multiple linear regressions, however in Table S5, the results that are displayed appear to be from simple linear regression. It would be helpful to include results and more details from multiple linear regressions in table S5. For example, were they conducted with or without interactions between variables?

The expanded explanation of regressions on lines 28-29 of page 5 addresses multiple regressions as well. In addition, we have added the results of the multiple regressions discussed in the text to table S5.

Minor/Edito:
P1. Line 15 (Abstract): Perhaps should read: "In order to better understand..." instead of "In order to understand better..."?

We have not changed this because the most common standards of English writing suggest that you should not split infinitives. This is somewhat disputed, but it seems safer to go with avoiding split infinitives.

P1. Line 32: Missing names on first reference: "1995"

This has been fixed.

P5. Line 15 (Eqn 1): I believe Eqn one should have a theta term included to represent concavity.

Yes, good catch. It was lost converting the manuscript to the Copernicus template and I have returned it.
The figure referenced in this sentence shows Median basin ksn, however the text reads mean basin ksn.

Yes, good catch. We’ve fixed this.

Perhaps the authors might soften the assertion that "Thus, we conclude that precipitation is not a significant control on erosion in this landscape" with something like: "Thus, within the scale and scope of our study, we conclude that precipitation is not a significant control on erosion in this landscape".

We agree – this study is quite small. This has been fixed.

These seem to belong in the results section and not the discussion section.

Although we see how this could go in the results section, we feel more comfortable leaving it in the discussion section. The discussion is about the effects of agriculture while the results simply report the various correlations. We think there is some flexibility on what can go in each section and this provides context for the discussion but would be disjointed from the results section.

Missing names on first reference: "1995".

Fixed.

It appears that sample CH-01 and CH-23 which are included in supplementary table 1 are not included in Figure 4. A short explanation for why (or a footnote either in the supplementary tables or figure) would be helpful.

We have removed these samples. They are downstream of a big dam and were removed from the analysis because of the effects of the dam. It was a mistake to have them in table 1.

Supplementary Tables: It would be helpful to include the basin name (instead of just the basin number) in the supplementary tables, as any reader who wishes to analyze or interpret the raw data will be familiar with the basin names only from the manuscript text.

Thanks for catching this oversight. We have put names in all the tables.

The influence of topographical and climatic factors, and human intervention on catchment-wide erosion rates measured using in-situ produced cosmogenic 10Be. In the paper, authors have
attempted to evaluate the control of climate, topographic steepness (mean basin slope, mean basin relief and normalized channel steepness) and land use changes that had occurred over a period of 30 years from 1950 to 1980 in the Yunnan River basin of SW China. They have selected three catchments within this large river basin, which is characterized by different geomorphological settings, a significant gradient in the precipitation pattern from the upper part (north) to lower part (south) and a noteworthy increase in human disturbances from the north to the south. Erosion rates in this river basin have been measured in fluvial sediments sampled from 52 small catchments. These samples represent a large array of topographic setting, different rainfall regimes and end member as well as mixed situations of land use types. Locations for the sampling sites have been perfectly selected, which complies with the main scope of the research. Topographic parameters in the river basin have been derived digitally with the aid of a digital elevation model. Following a wide statistical analysis, correlations between the measured erosion rates and topographic factors, land use types and mean annual precipitation have been deduced.

Even though the rainfall significantly varies from north to south of the river basin, a control of mean annual precipitation on erosion rates has not been detected in this landscape. Overall, they have found a correlation between the erosion rates and topographic factors and land use types for the entire river basin. Correlation between the topographic steepness and erosion rate is strong for the Yongchun catchment, which is situated in the north, and then it has decreased from the northmost catchment (minimally disturbed by the agriculture) to the southmost catchment (significantly disturbed by agriculture). They have found that in the south-most catchment (Nankai), there is no significant influence of topography on cosmogenic nuclide derived erosion rates suggesting that erosion in this catchment is mainly controlled by human perturbation since it is the highest disturbed catchment for agriculture. Further, they claim that cosmogenic nuclide derived erosion rates in small catchments within the Nankai catchment have increased up to 2.5 as a result of agricultural land use. Subsequently, the main conclusion of this research points to small catchments in the river that are under intensified agriculture erode sediments below the mixed layer of the landscape by exporting sediments to the fluvial system with low cosmogenic nuclide concentrations. However, they have not adequately discussed on how this mixed layer is developed within the landscape and then become homogenized in in-situ cosmogenic nuclides. This is the main theoretical outline of their finding, which should be highlighted. Nevertheless, they have not cited the relevant papers in the literature that discuss the same phenomenon in many landscapes elsewhere in the world. Even though their correlation analyses support this argument of sending sediments below the mixed layer, which is not connected to the field observations. Therefore, more explanations on catchment characteristics and especially hillslope erosional mechanisms and how these sediments are derived below the mixed layer need to be presented to strengthen their argument.

I would like to give following three main suggestions to further enhance the quality of their manuscript.

1. Include additional information on In-situ produced cosmogenic nuclide method / Formation of mixed layer / Possibility of eroding sediments below the mixed layer in agricultural catchments referring to the literature.
Cosmogenic nuclide derived erosion rates have been used as background erosion rates even in the perturbed catchments because sediments are usually derived below the mixed layer in many landscapes worldwide. Presence of mixed layer in a few landscapes is documented in previous studies, thickness of this layer is considered as 50-100 cm in the tropics but can be up to 3–4 m (van Breemen and Buurman, 1998; Wielemaker, 1984). At steady state, the cosmogenic nuclide concentration of the mixed layer becomes equal to that of its surface (Brown et al., 1995; Granger et al., 1996). In situ produced cosmogenic homogeneity in this mixed layer was experimentally illustrated in many landscapes (Braucher et al., 2000, Small et al., 1999; Schaller et al., 2002b). Deriving of sediments below the mixed layer in perturbed catchments, and if so, possibility of estimating higher apparent erosion rates have also been discussed in previous studies (von Blanckenburg et al., 2004). Therefore, authors are advised to revisit the relevant literature since this paper is biased to the fact that sediments are eroded below the mixed layer in highly agricultural catchments.

This is a very good point. We have added a paragraph with a more thorough introduction to the mixed layer to page 2 (lines 3-8).

2. Provide more catchment characteristics/ Erosional mechanisms.

Since the main aim of this manuscript is to show that cosmogenic-nuclide derived erosion rates in some small catchments are affected by recent changes in land use, it is important to present more field evidences to support this hypothesis. For example, it would be interesting if you are able to show that sediments in these disturbed catchments are now derived below the mixed layer either by sheet erosion or they are eroded below the mixed layer via linear erosion (rills, gullies or landsliding). In the latter case, an appropriate portion of the catchment should be eroding under linear processes to increase the catchment-wide erosion rates in the perturbed catchment by a factor 2.5. This phenomenon has been revealed by Von Blanckenburg et al., 2004 using a simple model. It would be important for authors to elaborate the mechanisms of how the sediments with low cosmogenic nuclide concentrations are derived below the mixed layers in the agricultural catchments.

We don’t think we really have the data or field observations to say for certain what is driving the deep erosion. I suspect that it is simply a long history of agricultural land use without appropriate erosion control measures. For example, we frequently saw agricultural land all the way to rivers with furrows running parallel to the hillslope, rather than contouring it. Clearly if this type of land use is pervasive in a watershed, it can cause the kind of sheetwash that would result in sediment from below the mixed layer being delivered to the river. We have added some of this speculation to the discussion and also cited the appropriate and important paper you mention. This is in a paragraph on pages 8-9 (from line 30 on page 8 to line 7 on page 9).

3. Provide details of Quaternary alluvial deposits.

Under geology, authors have simply mentioned that Yongchun and Nankai catchments are largely covered by Quaternary alluvial sediments. But, it has not been mentioned whether sediments are also derived or not from these Quaternary formations. If the catchments contain large quantities
of recent sediments, there is a possibility of reworking these alluvial sediments from the storages to the river in addition to delivering sediments from hillslopes. If the sediment storage within the catchments is large and occurs for a longer period it does significantly affect the net cosmogenic concentration that you have measured in fluvial sediments. This is because sediments sampled from rivers (point bars, mid channel islands, river bed, etc.) should have accumulated additional cosmogenic nuclides by storing within the catchment. In contrast, there is a possibility for sediments to lose their concentration by radioactive decay during burial in alluvial deposits depending on their age. Therefore, if your sediments were not contaminated with sediments from alluvial storages, it is important to mention. This justification will build up the forcefulness of your subsequent analyses to evaluate how erosion rates are affected by topography, climate and land use.

In the Nankai watershed, only two samples (CH-071 and CH-075) are taken from areas with extensive Quaternary sediments. The other samples are from upland locations. This is because in the lowland areas, rice paddies and irrigation were so common as to nearly entirely obscure the natural river channel in the Nankai watershed.

In the Yongchun watershed, most of the Quaternary fill is downstream of our farthest downstream sample, with only sample CH-024 possibly sourcing some of the fill sediments. We cannot estimate how much of this sample has sediments from the fill material.

We have added two sentences to the field sites section (section 2) explaining what I outline above. They are lines 7 on page 2 and 10-11 on page 3.

Minor Comments
P1, line 24 – What is the depth of tillage? It should be very deep if you argue that sediments are derived below the mixed layer by tillage.

In the abstract we say that tillage and resultant erosion are sourcing deep sediments. We don’t know how deep tilling is and it seems likely that part of the increase in erosion is due to sheet wash in areas with reduced ground cover due to erosion and tilling.

P 2, Line 2 – I don’t think that the readers who are not much familiar in cosmogenic nuclide method will really understand what is meant by mixed layer.

This has been clarified with an additional paragraph as explained in response to your point 1, above.

P2 Line 4 – this is not an assumption. Cosmogenic nuclide homogenization has been experimentally demonstrated in many landscapes elsewhere.
This has been clarified with an additional paragraph as explained in response to your point 1, above.

P2, Lines 31-32 Need more details about Quaternary alluvium

This has been clarified with an additional paragraph as explained in response to your point 3, above.

P2, lines 33 and P3, line 24-25 – Why the authors are concerned to know the relative distribution of quartz in the watershed. I don’t think that geological map will provide this information.

We are concerned about the relative abundance of quartz because we measure ^{10}Be in quartz. If the landscape is not shedding quartz in proportion to its erosion rate, for example, if there is widespread carbonate in the watersheds, then erosion rate estimates are not going to be accurate. We are explaining in these lines that we cannot quantify quartz distribution in the watershed.

P 6, lines 1-2 – Not clear

This is now p 6, lines 11-12. This sentence, which starts on line 10, is presenting correlation results for the Yongchun watershed. We have tried to clarify it.

P6, line 29, Authors have used the term “long-term erosion rates” through the manuscript. I think this term is relative, hence may not be appropriate to use since they don’t have any short-term erosion rate presented in the manuscript. For those who work on much longer time scales, cosmogenic nuclide-derived erosion rates seem to be short-term. Therefore, the term “cosmogenic nuclide-derived erosion rate” may be more appropriate than ‘long-term erosion rate”.

This has been fixed throughout the manuscript.

P 8, line 13-15, This looks like an assumption. This fact can be justified using data/field observation.

This is now page 8 lines 23-25. We do not have the soil profile data or detailed maps of erosion patterns to test this hypothesis. Thus, we suggest that the reason for the correlation is due to elevated erosion in response to agriculture, but we cannot formally test that with field data such as suggested by von Blanckenburg (2004).

P8, line 30, I think that these depth of the mixed layer should be greater than 30-60 cm.
Again, we have no data on the actual depth of the mixed layer at this location. We could guess that it is thicker because the location is sub-tropical, but without soil profile data to complement the basin average erosion rates, we cannot make more than general statements about how much material has been lost.

P9, line 4, For larger watershed, there are some other issues when the cosmogenic method is applied. Temporary storage of sediments in larger watershed has to be considered.

This is definitely true and we have added a caveat to be concerned with sediment storage.

P13, Figure caption – (a), (b) and (c) should be capitalized

This has been fixed.

P21, Figure 07 has not been sufficiently discussed in the text

In response to concerns from reviewer 1, figure 7 has been clarified. This also resulted in an extended explanation in the text about the figure (p 7, lines 3-22).
Influence of topography and human activity on erosion in Yunnan, SW China
Amanda H. Schmidt1, Thomas B. Neilson2, Paul R. Bierman2,3, Dylan H. Rood4,5,6, William B. Ouimet7, Veronica Sosa Gonzalez3

1 Geology Department, Oberlin College, 403 Carnegie Building, 52 W. Lorain St., Oberlin, OH 44074, USA
2 Department of Geology, University of Vermont, 180 Colchester Ave., Burlington, VT 05405
3 Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405
4 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
5 AMS Laboratory, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK
6 Earth Research Institute, University of California, Santa Barbara, CA 93106, USA
7 Department of Geography and Center for Integrative Geosciences, University of Connecticut, Storrs, CT, 06269, USA

Correspondence to: Amanda H. Schmidt (aschmidt@oberlin.edu)

Abstract.
In order to understand better if and where erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km²). Erosion rates range from 12 – 209 mm/kyr with an area-weighted mean of 117 ± 49 mm/kyr (1 standard deviation) and median of 74 mm/kyr. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosion rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that in some small watersheds we sampled, those with high rates and intensity of agricultural land use, that tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.

1 Introduction

Understanding the source and volume of sediment moving across the landscape, and the role of humans in sediment generation and transport, are fundamental issues in Earth Science (NRC, 2012). In situ 10Be (10Be; t½ = 1.39 My) (Chmeleff et al., 2009), measured in detrital quartz sand, is widely used (Portenga and Bierman, 2011) to estimate basin-wide erosion rates integrated over 10³ – 10⁵ years (Brown et al., 1995;Bierman and Steig, 1996;Granger et al., 1996). The technique is useful even in areas disturbed by people (Brown et al., 1995;Brown et al., 1998;Granger et al., 1996;Bierman and Steig,
because human activity does not typically erode sediment below the mixed layer over the scale of sampled watersheds.

In agricultural catchments, a mixed layer that has uniform concentration of \textit{in situ} \(^{10}\)Be throughout forms from agricultural land use (Schaller et al., 2003; Braucher et al., 2000; Small et al., 1999). While the mixed layer is typically 50-100 cm thick, can be as much as 3-4 m thick (van Breemen and Buurman, 1998; Wielemaker, 1984). In some disturbed environments, the formation of gullies can result in sediment that is sourced from below the mixed layer, thus artificially elevating apparent erosion rates (Von Blanckenburg et al., 2004).

Despite the fact that humans are now one of the most effective geomorphic agents (Hooke, 1999, 2000), most prior research measuring \(^{10}\)Be, in river sediment to document erosion rates has relied on the assumption that human disturbance in most environments does not alter calculated erosion rates. However, sediment gauging records are sparse and problematic for constraining the effects of human activity on erosion rates (e.g., Trimble, 1977) because of both the time frame of integration and because of in-catchment storage, both hillslope and alluvial. Land use changes are often not of large enough scale nor do they usually occur during discrete enough time periods so as to affect an entire upstream watershed; thus, it is typically not possible to untangle the relative effects of human activity and natural factors, such as topography and climate, on erosion rates calculated using the measured abundance of \(^{10}\)Be, in fluvial sediment. Understanding when and where human activity has changed the concentration of \(^{10}\)Be, in contemporary river sediment and thus increased cosmogenically-based erosion rates will suggest where such rates are likely to be most accurate and least biased.

Southwestern China is an ideal location to test the effects of focused change in upstream land use over short periods of time due to top-down land use policies that were widely implemented throughout the region over the last 50 years. From the 1950s to the late 1980s, western China experienced what is termed as the Three Great Cuttings (the Great Leap Forward [late 1950s], Grain as the Key Link [early 1970s], and Opening and Development [mid-1980s]) (Shapiro, 2001; Trac et al., 2007), which are blamed for widespread erosion on very small (plot) scales (Urgenson et al., 2010; Zhang, 1999; Zhang and Wen, 2002, 2004). Thus, if anywhere is likely to show an effect of modern increases in agriculture on apparent cosmogenic-nuclide derived erosion rates, it would be southwestern China.

In this paper, we report long term \(^{10}\)Be,-derived erosion rates for a series of nested samples contained within three watersheds in Yunnan Province (Figure 1). By focusing in detail on small subcatchments within three small (200-2500 km\(^2\)) watersheds, we are able to understand better how differences in precipitation, topography, and land use influence apparent long term \(^{10}\)Be, erosion rates in tropical regions in southwestern China.

2 Field Sites

We chose the Yongchun, Weiyuan, and Nankai Rivers based on the range in basin area (200 – 2500 km\(^2\)), relative position in the regional N-S gradient in rainfall (Figure 1C) (Fan et al., 2013), and high topographic variability (Figure 1B).
The Yongchun River watershed, situated on the southeastern margin of the Tibetan plateau (Figure 2), is a small (198 km2) high-elevation watershed, with the lowest mean annual precipitation (MAP = 869 mm/yr) of the study sites (Figure 1c). Based on field observations of river-borne clasts and the available geologic map, the basin is underlain by Triassic granite, shale, sandstone, and limestone, and Neogene sandstone, mudstone and conglomerate; significant portions of the basin are mantled by Quaternary alluvium (Ministry of Geology and Mineral Resources, 1986), but the geologic map is not diagnostic of quartz content, making it impossible to determine the relative distribution of quartz in the watershed. Only sample CH-024 is from lowland areas with fill; other samples source areas without Quaternary fill. The Yongchun River bifurcates into northern and southern arms, with the steeper sub-basins in the southern arm and high-elevation, low-slope surfaces in the northern arm (Figure 3). In 2012, a large (~30 m tall) dam was completed in the southern arm of the Yongchun and we observed numerous small diversion and check dams as well as out-of- and in-channel gravel mining operations. We sampled upstream of the large dam to minimize effects on our samples. Land use in the Yongchun basin consists primarily of forest, cultivated land, shrubland, and grassland.

The topography of the Yongchun is unique among the basins we sampled, with incision along the main-stem of the Mekong River overprinting the influence of normal faulting in the basin. The Yongchun watershed was part of a regional high-elevation, low-relief surface formed during the Oligocene to early Pliocene (Clark et al., 2006; Liu-Zeng et al., 2008). A mapped NW-SE trending fault offsets formations mapped as Neogene (Ministry of Geology and Mineral Resources, 1986), with normal motion, inferred from field observations, occurring after the formation of the low-relief surface. The main- and southern-arms of the Yongchun River currently flow along the fault trace (Figure 3). Faulting increased relief in the southwestern footwall portion of the Yongchun basin, and fault scarp knickpoints migrated up the southwestern drainages forming the steep, high-elevation topography currently observed. Headward migrating knickpoints from the Mekong River entered the Yongchun River after ~9 – 13 Ma (Clark et al., 2005) and began the ongoing process of eroding the remaining low-relief landscape on the hanging wall. Knickpoint propagation was likely faster along the main- and southern-arms of the river, where incision was facilitated by the fault, resulting in less low-relief area on the hanging wall in the southern arm.

The Weiyuan watershed is the largest of the three basins (2508 km2), further south in the regional rainfall gradient (MAP = 1050 mm/yr), and lower in elevation than the Yongchun basin (Figure 1). The Weiyuan watershed consists of a main-stem river that is joined by the western arm near the outlet and the eastern arm ~20 km upstream of the outlet (Figure 2). Steep slopes generally prevail throughout the basin with gentle slopes limited to valley floors (Figure 3). Field observations and geologic mapping indicate that the majority of the basin is underlain by Paleogene mudstone, sandstone, and conglomerate, with Cretaceous sandstone and siltstone in the western arm and northern-most portion of the basin (Ministry of Geology and Mineral Resources, 1986); as with the Yongchun, we are unable to determine the relative abundance of quartz throughout the watershed from the geologic map. The western arm of the Weiyuan River holds the largest of the dams in the studied basins (>30 m tall), which was completed in 1990. The dam is >35 km upstream of the nearest sample on the western arm of the Weiyuan River, limiting the influence of this dam. We also observed many mid-sized and smaller dams and diversions throughout the watershed, as well as numerous active-channel gravel mining operations.
operations. Land in the Weiyuan watershed is generally either forested or cultivated, with agriculture comprising ~ 22% of the total basin area, primarily in valley bottoms (Figure 3).

The Nankai River watershed (1006 km²) is the lowest elevation, furthest south, and wettest of the three basins (MAP = 1299 mm/yr; Figure 1b). Late Paleozoic-Mesozoic quartz monzonite and Proterozoic low- to mid-grade metamorphic rocks primarily underlie the basin; however, the northernmost portion of the basin is underlain by Jurassic sandstone and siltstone, and valley bottoms are covered by Quaternary fill (Ministry of Geology and Mineral Resources, 1986). Steeper upland sub-basins and expansive low slope valley floors characterize the Nankai watershed (Figure 3). The majority of streams are diverted near the mountain-front to irrigate sugarcane and rice paddies that cover the valley floor; the natural river channel in much of the northern arm is completely obscured by agriculture and irrigation structures (Figure 2). With the exception of CH-071 and CH-075, samples in the Nankai watershed were taken from upland locations due to the extensive irrigation in lowland locations. At least four dams have been constructed in the upland sub-basins of the watershed, but only affect very small subbasins. Mining of active channel gravel was common where the natural river channel was present. The landscape is primarily cultivated. Field observations suggest that while some land is mapped as forest and grass/shrubland, grass/shrubland areas are actually rubber plantations and tea plantations (Figure 3).

3 Methods

3.1 Sampling

Using GIS and remotely sensed data, we selected 52 in-channel sample sites in three different drainage basins (Figure 4, Table S1). Sampled upland sub-basins (n = 25) include the full range in mean slopes across all sub-basins over ~5 km² and include basins with end-member land uses (i.e., primarily cultivated or forested). We also collected a series of samples along major trunk-streams between the uplands and outlet in each basin (n = 25).

We collected samples of fluvial sediment from point bars, mid-channel islands, depositional pools, and channel beds in 2013 immediately prior to the start of the summer monsoon. Sample sites were re-evaluated in the field to account for intensive human alteration of the channel nearby, including sediment mining. If human alteration was present, we moved sampling sites to a more suitable location (usually upstream). We field sieved sediment to 250 – 850 μm.

3.2 In situ 10Be extraction and measurement

Bulk aliquots of each sample were purified to isolate quartz using chemical etching (Kohl and Nishiizumi, 1992) at the University of Vermont. Prior to Be extraction, the purity of isolated quartz was tested using inductively coupled plasma – optical emission spectroscopy. Be was extracted from ~5 – 25 g of purified quartz spiked with ~250 μg of 9Be (beryl carrier) following established procedures (Corbett et al., 2016). Each batch included one process blank and one CRONUS N standard (Jull et al., 2015). 10Be/9Be ratios were measured by Accelerator Mass Spectrometry at the Scottish Universities...
Environmental Research Centre (Xu et al., 2010;2015), normalized to the NIST standard with an assumed $^{10}\text{Be}/^9\text{Be}$ ratio of 2.79×10^{-11} (Nishiizumi et al., 2007), and background corrected by the average process blank ratio of $2.64 \pm 0.98 \times 10^{-15}$ ($n = 7$, 1 SD) (Table S2). The single replicated field sample agreed to < 1%. Erosion rates were calculated based on the ^{10}Be, abundance in each sample, effective elevation (Portenga and Bierman, 2011), mean latitude, and mean longitude using the CRONUS-Earth online calculator (Accessed March 2014; main code v2.2, constants file v2.2.1, global production rate, and the time invariant Lal/Stone scaling model Table S3) (Balco et al., 2008).

3.3 Digital data

We use 30 m resolution digital elevation models generated by NASA and METI’s ASTER GDEM program (NASA LP-DAAC, 2012b) as the basis for calculating total basin relief, slope, and normalized channel steepness (k_{sn}). Relief is the difference between the minimum and maximum elevation for each basin. We use precipitation data provided by the APHRODITE program, a collaboration between the Research Institute for Humanity and Nature Japan and the Meteorological Research Institute of Japan Meteorological Agency. We use version APHRO_MA_V1101, which consists of daily 0.25° gridded precipitation data from 1951 to 2007 (Yatagai et al., 2012). Although it does not have the highest spatial resolution, APRHODITE provides the most accurate rainfall estimates of available datasets for this region (Andermann et al., 2011). Land-use data is from the GLC30 land cover dataset and represents 30 m resolution land cover from 2010 derived from Landsat TM, ETM+, and Chinese HJ-1 multispectral satellite images and a suite of auxiliary data sources (Chen et al., 2015). Our study watersheds are dominated by agricultural, forested, shrubland, and grassland (only Yongchun has grassland). We combine shrub/grasslands and use these three categories as our primary metrics of land use.

We calculate channel steepness using longitudinal river channel profiles derived from the DEM. The channel slope (S) and drainage area (A) of a fluvial channel are typically related through the power-law (Flint, 1974) (eq. 1):

$$ S = k_s A $$

(1)

where k_s is the steepness index and θ is concavity. Channel steepness index, k_s, is highly sensitive to variation in θ, a complication we correct for by using a reference concavity for all basins of $\theta = 0.45$, allowing us to derive normalized channel steepness (k_{sn}) in place of k_s (Wobus et al., 2006). We average k_{sn} in all channel segments (1 km long) where $A > 1$ km2, and present basin-wide mean and median k_{sn}, as employed by other studies (DiBiase et al., 2010;Miller et al., 2013;Ouimet et al., 2009). We use median k_{sn} in analyses to minimize the effects of outlier values but present both in supporting material.

Regressions presented are single and multivariable linear regressions calculated in R using the lm command. Multiple regressions assume that all independent variables are independent of one another.
4 Results

Across all three study basins, \(^{10}\)Be\(_i\)-derived erosion rates range from 12 – 209 mm/kyr with an area-weighted mean of 117 ± 49 mm/kyr and median of 74 mm/kyr (Figure 5). In the Yongchun River watershed, erosion rates vary from 12 – 209 mm/kyr, with an area-weighted mean of 51 ± 57 mm/kyr and median of 38 mm/kyr. Erosion rates in the Weiyuan watershed are generally higher, from 55 – 193 mm/kyr with an area-weighted mean of 128 ± 34 mm/kyr and similar median value (122 mm/kyr). The Nankai watershed has the lowest rates of erosion, 21 – 83 mm/kyr, with an area-weighted mean of 50 ± 15 mm/kyr and median of 48 mm/kyr.

Considering the study area as a whole, erosion rates are significantly and positively correlated with mean basin slope, mean local relief, median \(k_{sn}\), fraction of the watershed covered by forest, and fraction of the watershed covered by grassland or shrubland (\(R^2 \geq 0.18\), \(p < 0.05\), Figure 6). In the Yongchun watershed, erosion is significantly and positively correlated with slope and fraction of the watershed that is forest, and significantly and negatively correlated with fraction of the watershed that is grass/shrubland (\(R^2 \geq 0.32\), \(p < 0.05\)). In the Weiyuan watershed, erosion is significantly correlated with median \(k_{sn}\), mean annual precipitation (MAP), fraction of the upstream watershed that is agriculture, fraction of the upstream watershed that is forested, mean basin slope, and mean local relief (\(R^2 \geq 0.20\), \(p < 0.05\)); the relationship is positive for all terms except MAP and fraction of the upstream watershed that is forested. In the Nankai watershed, erosion is significantly correlated with MAP and fraction of the upstream basin that is grass/shrubland (\(R^2 \geq 0.42\), \(p < 0.01\)); MAP is an inverse correlation while grass/shrubland is positive.

5 Discussion

Topographic and climatic parameters are often invoked as controls on \(^{10}\)Be\(_i\)-determined erosion rates (e.g., Portenga and Bierman, 2011) while human land use is assumed not to alter isotopically-determined erosion rates except in the most disturbed locations (Reusser et al., 2015). In small watersheds in Yunnan, where modern Chinese policies encouraged widespread deforestation and expansions in agriculture from the 1950s to 1980s, we find that topographic metrics correlate with erosion rates over the entire study area, with secondary effects that we interpret as resulting from human modification of the landscape. Mean annual precipitation is not important in setting erosion rates in our study area. Below we explore the evidence for topographic control of erosion rates, the inverse correlations with rainfall, and evidence for human-induced increases in apparent \(^{10}\)Be-determined erosion rates.

5.1 Topographic influence on erosion rates

Across the entire study area, we find that cosmogenic-nuclide derived erosion rates correlate best with measures of topographic steepness. Individual regressions for erosion rates as a function of topographic steepness (slope, relief, and median \(k_{sn}\)) are all significant (\(p < 0.01\)) and combining all three parameters increases the \(R^2\) to 0.62, suggesting that
Topographic steepness explains most of the variability in measured, cosmogenic-nuclide derived erosion rates in our study area (Figure 6).

Considering the basins individually, the influence of topographic parameters on erosion rates declines from north to south in the study area. The Yongchun River watershed (northernmost basin) has the strongest topographic signal in erosion rate patterns and long-term landscape evolution appears to be the primary control on erosion rates. Faulting and base level fall from Mekong River incision created a transient landscape with streams draining three different sub-landscapes: high-elevation low-relief, actively-adjusting, and the footwall of the fault (Figure 7A). Mixing of sediment from the low-erosion rate, high-elevation, low-slope landscape with sediment from the more rapidly eroding, actively-adjusting and footwall landscapes has resulted in erosion rates that scale non-linearly with elevation, a proxy for the proportion of low-slope area (Figure 7B, D). Basins with mean elevations >3000 m have lower long term erosion rates, 12 – 38 mm/kyr, than basins draining proportionally less relict landscape (mean elevations <3000 m), 50 – 209 mm/kyr, confirmed by a Wilcoxon rank-sum test (p = 0.003). Similar results have been found using 10Be, elsewhere in landscapes adjusting to baselevel fall (Willenbring et al., 2013), and in measured 10Be erosion rates above and below knickpoints (Miller et al., 2013).

In contrast to other studies comparing k_{sn} and erosion rate (Ouimet et al., 2009; Vanacker et al., 2015; DiBiase et al., 2010), we observe a peaked non-linear distribution of erosion rates as median basin k_{sn} increases (Figure 7C). However, as found in other studies (e.g., Ouimet et al., 2009; Vanacker et al., 2015; Granger et al., 1996; Binnie et al., 2007; DiBiase et al., 2010; Montgomery and Brandon, 2002), including a global meta-analysis (Harel et al., 2016), erosion rates increase non-linearly with increasing mean basin slope (Figure 7E). This implies that erosion rates lag behind channel steepening and only increase after channel incision has lowered hillslope base-level and steepened slopes. Compared to a global compilation of erosion rates as a function of mean basin k_{sn} (Harel et al., 2016), we find that the Yongchun has slightly lower erosion rates for the calculated k_{sn} values. This could be a function of how k_{sn} was calculated, as we used a higher resolution topographic dataset than Harel et al. (2016).

Topography also appears to exert a first order control on erosion rates in the Weiyuan watershed. We observe modest and statistically significant relationships ($R^2 = 0.20 – 0.36$, $p < 0.05$) between erosion rate and relief, mean slope, and median k_{sn} (Figure 6). Combining relief and slope in a multiple regression increases R^2 to 0.52 ($p < 0.05$), but adding median k_{sn} does not further improve the regression. Thus, although neither relief nor slope dominates the signal, it appears that topographic steepness terms explain a large percent of the variance observed in erosion rates in the Weiyuan watershed.

In contrast to the influence of topography in the Weiyuan and Yongchun watersheds, we see no influence of topography on cosmogenic-nuclide derived erosion rates in the Nankai watershed ($p > 0.05$ for regressions with all topographic parameters). One possibility is that the Nankai has had steady long-term base level, thus removing the influence of topography on erosion rates (e.g., Riebe et al., 2000). However, in this tectonically active area on the margins of the Tibetan Plateau, faults are mapped throughout all three watersheds (Burchfiel and Chen, 2012). Thus, this lack of correlation suggests to us that in the Nankai watershed erosion rate is controlled by other factors. We explore this supposition below.
5.2 Inverse correlations with rainfall

In contrast to other studies (e.g., Bierman and Caffee, 2001, 2002; Henck et al., 2011; von Blanckenburg, 2005), we find that mean annual precipitation does not correlate with erosion rates in our study area. There is no gradient in rainfall over the Yongchun watershed due to its small size relative to pixels of the APHRODITE dataset. There are significant correlations between erosion rate and mean annual precipitation for the both the Weiyuan and Nankai watersheds ($R^2 \geq 0.35$, $p < 0.01$), and for the two watersheds considered together ($R^2 = 0.72$, $p < 0.01$); these correlations are all inverse relationships in which erosion rates decrease as precipitation rates increase – an improbable result in terms of process considerations (Figure 6). We do not consider these inverse correlations to be a causal relationship but instead interpret them as a sign that rainfall covaries with slope, relief, and median k_{sn} ($R^2 = 0.69$, $p < 0.01$, and correlation is inverse for a multiple regression of mean annual precipitation as a function of relief and slope). Thus, within the scale and scope of our study, we conclude that precipitation is not a significant control on erosion in this landscape.

5.3 Effects of agriculture on apparent 10Be$_i$ erosion rates

Our data suggest that in some small catchments, intensive land-use changes have increased apparent rates of erosion determined from 10Be concentrations in fluvial sediment. If our explanation is correct, human influence increases from north to south in the study area, with no apparent influence of human activity on 10Be$_i$-determined erosion rates in the Yongchun watershed. In the Nankai watershed, the southernmost of our study area, we find that agricultural land use is the primary control on the pattern of erosion rates we measure. The Nankai watershed is heavily cultivated (48% of land use) and the original river channel is mostly obscured by these land-use changes; specifically, terraces that are flooded to grow rice and sugarcane cover the floor of the basin. Upland hillslopes in the Nankai watershed are impacted by land uses shown to result in elevated surficial erosion (Sidle et al., 2006), including forest conversion to agriculture, pasture, and tea and rubber plantations (Figure 2). Field observations suggest that much of the landscape mapped as grassland and shrubland is actually tea and rubber plantations. With this in mind, we interpret the positive correlation between the percent land cover of grass/shrubland and 10Be$_i$-determined erosion rate in the Nankai watershed as suggesting that the upland agriculture has increased erosion rates and is excavating sediment from below the mixed (turbated) soil layer and delivering it to channels (Figure 6). In contrast, lowland (terraced) agriculture in the Nankai watershed, which is primarily mapped as agricultural, do not seem to alter erosion rates, as seen by the lack of correlation between erosion and agricultural land use for this watershed ($R^2 = 0.14$, $p = 0.17$). Thus, it seems that upland agriculture, in particular, is increasing erosion rates in the Nankai watershed.

In order to derive sediment from beneath the mixed layer, models suggest that intensive sheetwash or widespread linear erosion such as rills, gullies, and landslides supply most of the sediment to rivers (Von Blanckenburg et al., 2004). We did not see evidence for linear erosional features in the Nankai watershed, suggesting that these erosional processes cannot
be the driving factor for the elevated erosion rates. However, sheetwash, particularly from the tea plantations, is likely. We conducted field work just before the start of the summer monsoon, and thus did not observe sheetwash. However, the area around tea bushes and rubber trees was usually free from any ground cover. Furthermore, areas with extensive rubber plantations had visibly increased sediment loads in the rivers draining them. Finally, we commonly observed row crops planted with furrows parallel to hillslopes, presumably to facilitate draining excess water during the wet season, rather than erosion-controlling contour planting. This type of agricultural land management would also facilitate the deep erosion necessary to increase apparent erosion rates.

By comparing sampled catchments in the Nankai with varying percentages of grass/shrubland but similar basin slope, we can make a first order estimate of the relative effect of agriculture on erosion rates (Table 1). For the watersheds where grass/shrubland increases from <0.05% to over 25%, erosion rates increased by an average factor of 2.5. However, for watersheds where less land was converted to grass/shrubland (0.06% to 9.3%), the upstream land use does not appear to affect erosion rates.

In the Weiyuan watershed, anthropogenic land use change appears to play a secondary role to topography in setting rates of erosion in the watershed. The regression of erosion rates as a function of slope and relief improves from \(R^2 = 0.52 \) to \(R^2 = 0.62 \) (\(p < 0.01 \)) when fraction of the upstream watershed that is agricultural is added as an independent variable. This improved correlation suggests that in the Weiyuan watershed, agricultural land use plays a secondary, but still important, role in setting patterns of erosion rates. Comparing one watershed with only 6% agricultural land use to two watersheds with at least 20% agricultural land use but similarly steep slopes (\(~20^\circ\)), agricultural land use increased apparent erosion rates by an average factor of 1.8, suggesting that steep landscapes are also susceptible to the effects of large-scale land use change.

The influence of human activity on cosmogenic-nuclide derived erosion rates calculated from \(^{10}\text{Be} \), is unusual given that many other studies have found \(^{10}\text{Be} \)-derived erosion rates to be unaffected by anthropogenic activity unless the disturbance is deeper than \(~30-60 \) cm (Brown et al., 1995; Brown et al., 1998; Granger et al., 1996; Bierman and Steig, 1996; Hewawasam et al., 2003; Reusser et al., 2015; Vanacker et al., 2007). We thus conclude that in the Weiyuan and Nankai watersheds, agricultural activity must have resulted in the erosion of at least 30 cm of soil across large portions of each sampled watershed. In the Nankai watershed this excavation of material from depth has doubled apparent \(^{10}\text{Be} \)-determined erosion rates for the most heavily altered watersheds. The watersheds we studied are relatively small (4-2508 \) km\(^2\); mean = 309 \) km\(^2\); median = 46.5 \) km\(^2\)), making it more likely that land use changes have altered large portions of the upstream areas. It is less likely that the effects of human activity would be detected in larger study areas where land use is less homogenous. We conclude that the most representative background rates of erosion will come from the least disturbed watersheds as well as larger watersheds where heavily disturbed areas are less likely to cover significant areas and temporary storage of sediment is not a concern (c.f., Wittmann and von Blanckenburg, 2016).
6 Conclusions

Overall we find that erosion rates in Yunnan are correlated with both topographic and land use metrics. Our data and analysis suggests that human activity in the region has in some watersheds eroded sediment below the mixed layer and is sourcing deeply-derived sediment with lower concentrations of ^{10}Be, to channels, thus increasing apparent erosion rates by as much as a factor of 2.5. In heavily agricultural landscapes, such as the Nankai watershed, the effects of human activity have likely obscured the relationship between erosion rate and topographic parameters. In other locations, such as the Weiyuan watershed, both topography and human activity contribute to observed patterns of erosion. Thus, in small watersheds with extensive agriculture, erosion rates derived from \textit{in situ} ^{10}Be can be affected by both topography and the intensity and distribution of human activity. This suggests that in other areas with high levels of human disturbance, \textit{in situ} ^{10}Be-derived erosion rates could be inflated by human activity.

Author contribution

AHS, TBN, PRB, and VSG planned the experimental design. AHS, TBN, and VSG conducted the field work. DHR completed AMS analyses. WBO completed k_{mn} analyses. TBN completed all Be extractions. All authors contributed to analysing data and preparing the manuscript.

Acknowledgments

This research was supported by NSF awards EAR-1114166 (to Schmidt), EAR-1114159 (to Bierman), and EAR-1114436 (to Rood). We thank the staff of the AMS Laboratory at the Scottish Universities Environmental Research Centre (SUERC) for support during ^{10}Be measurements. We thank C. M. Zhang, R. J. Wei, and J. A. Bower for field assistance. The data used in this paper are included as tables in the supplemental information. The authors thank two anonymous reviewers for constructive feedback that improved the manuscript.

Reference List

NASA LP-DAAC: ASTER GDEM, LP DAAC, 2012b.
Table 1
Comparison of Nankai samples with similar slopes but varying upstream grass/shrubland.

<table>
<thead>
<tr>
<th>Mean basin slope of comparison (°)</th>
<th>Low grass/shrub</th>
<th>High grass/shrub</th>
<th>Ratio of erosion rates1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent grass/shrub</td>
<td>Erosion [mm/kyr]</td>
<td>Percent grass/shrub</td>
</tr>
<tr>
<td>15.5-15.8</td>
<td>0.03</td>
<td>30</td>
<td>27.8-29.6 (n = 2)</td>
</tr>
<tr>
<td>16.1-16.4</td>
<td>0.01</td>
<td>21</td>
<td>30.3-41.6 (n = 3)</td>
</tr>
<tr>
<td>19.0-19.3</td>
<td>0.06</td>
<td>44</td>
<td>9.3 (n = 1)</td>
</tr>
</tbody>
</table>

1 Ratio calculated by dividing the apparent erosion rate for the landscape with high grass/shrub area by the erosion rate for the landscape with the low grass/shrub land use. The mean reported in parentheses is the mean for that slope range. The average of all 5 watersheds where grass/shrubland increased to over 25% is 2.5.
Figure 1

Study location. Inset shows the region of interest within Southeast Asia (A), and primary panels show the locations of the basins sampled, topography (B) (NASA LP-DAAC, 2012a), and mean annual precipitation (C) (Yatagai et al., 2012).

Figure 2

Field photographs that show representative land use and landscape in each of the watersheds studied. From north to south: the Yongchun watershed headwaters (A) and looking across the southern arm of the basin (D); the Weiyuan watershed agricultural land near valley bottoms (B) and cleared land along the mainstem of the Weiyuan river (E); the tea plantations and rice paddies in the headwater areas of the Nankai watershed (C) and the flat agricultural landscape and incised channel in the downstream parts of the watershed (F).

Figure 3

Elevation, hillslope angle, median basin k_{sn} and land use for the study watersheds. Elevation, slope angle and k_{sn} are derivatives of 30 m ASTER DEM’s (NASA LP-DAAC, 2012a), and land use is provided by GLC30 (Chen et al., 2015). Median basin k_{sn} depicted for entire contributing area of each sample. Pie charts show the percentage of each land-use category in the basin, with the percentage of the most prevalent land-use noted on the chart. In the Yongchun watershed, the yellow line denotes the boundary between adjusting and relict landscape, and the red line denotes an east-down normal fault (dotted where inferred from field observations, solid where mapped (Ministry of Geology and Mineral Resources, 1986)). Data shown in this figure are in table S4.

Figure 4

Map shows the location, basin boundary, and sample ID for each sample in the Yongchun (A), Weiyuan (B), and Nankai (C). Data shown in this figure are in table S1.

Figure 5

Maps showing erosion rate for the entire contributing area at each sample site. Bar-and-whisker plots show the distribution of erosion rates and erosion indices by basin. The lower and upper limits of the central boxes indicate the 1st and 3rd quartiles, respectively, the central line indicates the median, and the whiskers extend to 1.5 times the inter-quartile range. Data shown in this figure are in table S4.
Figure 6
Erosion rate as a function of (from left to right in columns) slope, mean annual precipitation (MAP), mean local relief, median k_{ss}, % of the landscape that is agricultural, % of the landscape that is forested, and % of the landscape that is grass and shrubland. From top to bottom, rows are all the data, the Yongchun data, the Weiyuan data, and the Nankai data. Numbers on the plots are R^2 values. * represents a significant correlation at $p < 0.05$, ** represents a significant correlation at $p < 0.01$. Grey plots are not significant ($p > 0.05$). Data shown in this figure are in table S4; regression statistics are in table S5 while regression statistics for the relationships among independent parameters are shown in table S6.

Figure 7
Channel profiles for sampled sub-basins within the Yongchun watershed and erosion rates by distance from the outlet (A). Channel profiles end where the upstream area falls below ~0.54 km2. Scatter plots show relationships between elevation and erosion rate (B), median k_{ss} and erosion rate (C), elevation and mean basin slope (D), and erosion rate and mean basin slope (E). Data shown in this figure are in table S4.
Fig03

<table>
<thead>
<tr>
<th>Elevation above sea level</th>
<th>Hillslope angle</th>
<th>Normalized channel steepness</th>
<th>Land-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yongchun</td>
<td></td>
<td></td>
<td>62%</td>
</tr>
<tr>
<td>Weiyuan</td>
<td></td>
<td></td>
<td>77%</td>
</tr>
<tr>
<td>Nankai</td>
<td></td>
<td></td>
<td>48%</td>
</tr>
</tbody>
</table>

- **Elevation (m)**:
 - Low: 700
 - High: 4000

- **Slope (°)**:
 - Low: 0°
 - High: 30°

- **Median k_s**:
 - <60
 - 60-80
 - 80-100
 - 100-120
 - >120

- **Land-use**:
 - Cultivated
 - Forest
 - Grassland
 - Wetland
 - Water
 - Artificial
 - Shrubland
Fig04

B. Weiyuan

Map Elements

- Sample Site
- Basin Boundary

A. Yongchun

C. Nankai
Fig06

<table>
<thead>
<tr>
<th>Slope [°]</th>
<th>MAP [mm/yr]</th>
<th>Relief [m]</th>
<th>Median k_{so}</th>
<th>% Agricultural</th>
<th>% Forest</th>
<th>% Shrub</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.31**</td>
</tr>
<tr>
<td></td>
<td>0.36**</td>
<td>0.06</td>
<td>0.39**</td>
<td>0.18**</td>
<td>0.05</td>
<td>0.34**</td>
</tr>
<tr>
<td></td>
<td>0.36*</td>
<td>N/A</td>
<td>0.09</td>
<td>0.00</td>
<td>0.05</td>
<td>0.36*</td>
</tr>
<tr>
<td></td>
<td>0.21*</td>
<td>0.35**</td>
<td>0.20*</td>
<td>0.36**</td>
<td>0.21*</td>
<td>0.21*</td>
</tr>
<tr>
<td></td>
<td>0.21*</td>
<td>0.36**</td>
<td>0.14</td>
<td>0.05</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.43**</td>
<td>0.01</td>
<td>0.05</td>
<td>0.14</td>
<td>0.46**</td>
</tr>
</tbody>
</table>

Nankai Yongchun Weiyuan