On the Holocene Evolution of the Ayeyawady Megadelta

Authors:

Liviu Giosan¹, Thet Naing², Myo Min Tun³, Peter D. Clift⁴, Florin Filip⁵, Stefan Constantinescu⁶, Nitesh Khonde¹,⁷, Jerzy Blusztajn¹, Jan-Pieter Buylaert⁸, Thomas Stevens⁹, Swe Thwin¹⁰

Affiliations:

¹Geology & Geophysics, Woods Hole Oceanographic, Woods Hole, USA
²Pathein University, Pathein, Myanmar
³University of Mandalay, Mandalay, Myanmar
⁴Geology & Geophysics, Louisiana State University, USA
⁵The Institute for Fluvial and Marine Systems, Bucharest, Romania
⁶Geography Department, Bucharest University, Bucharest, Romania
⁷Birbal Sahni Institute of Palaeosciences, Lucknow, India
⁸Technical University of Denmark, Roskilde, Denmark
⁹Uppsala University, Uppsala, Sweden
¹⁰Mawlamyine University, Mawlamyine, Myanmar

Correspondence to: L. Giosan (lgiosan@whoi.edu)

*submitted to Earth Surface Dynamics
Supplementary Materials

Fig. S1. Trench and drill sites location and other locales mentioned in text.
Table S1. Radionuclide activities obtained from high resolution gamma spectrometry. These values were used to derive total dose rates to quartz and K-feldspar grains presented in Table 2 using the conversion factors from Guérin et al. (2011). For K-feldspar the internal beta dose rate was estimated using an internal K content of 12.5±0.5% (Huntley and Baril, 1997). A cosmic ray dose rate component was also incorporated (Presscott and Hutton, 1994).

<table>
<thead>
<tr>
<th>Sample code</th>
<th>U-238 (Bq/kg)</th>
<th>Ra-226 (Bq/kg)</th>
<th>Pb-210 (Bq/kg)</th>
<th>Th-232 (Bq/kg)</th>
<th>K-40 (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 72 01</td>
<td>16 ± 15</td>
<td>27.2 ± 1.2</td>
<td>n.a. ± n.a.</td>
<td>48.0 ± 1.3</td>
<td>450 ± 22</td>
</tr>
<tr>
<td>17 72 02</td>
<td>36 ± 5</td>
<td>32.4 ± 0.9</td>
<td>39 ± 6</td>
<td>52.3 ± 0.9</td>
<td>513 ± 14</td>
</tr>
<tr>
<td>17 72 03</td>
<td>17 ± 4</td>
<td>18.6 ± 0.8</td>
<td>17 ± 5</td>
<td>32.2 ± 0.7</td>
<td>518 ± 13</td>
</tr>
<tr>
<td>17 72 04</td>
<td>25 ± 3</td>
<td>26.6 ± 0.5</td>
<td>27 ± 4</td>
<td>45.8 ± 0.6</td>
<td>493 ± 10</td>
</tr>
<tr>
<td>17 72 05</td>
<td>23 ± 3</td>
<td>23.2 ± 0.6</td>
<td>25 ± 4</td>
<td>43.9 ± 0.6</td>
<td>476 ± 10</td>
</tr>
<tr>
<td>17 72 06</td>
<td>8 ± 4</td>
<td>13.7 ± 0.6</td>
<td>15 ± 5</td>
<td>28.0 ± 0.7</td>
<td>562 ± 14</td>
</tr>
<tr>
<td>17 72 07</td>
<td>24 ± 4</td>
<td>16.3 ± 0.8</td>
<td>14 ± 5</td>
<td>36.3 ± 0.7</td>
<td>555 ± 14</td>
</tr>
</tbody>
</table>

References: