Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.176 IF 3.176
  • IF 5-year value: 3.108 IF 5-year
  • CiteScore value: 3.06 CiteScore
  • SNIP value: 0.978 SNIP 0.978
  • SJR value: 1.421 SJR 1.421
  • IPP value: 2.88 IPP 2.88
  • h5-index value: 13 h5-index 13
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 13 Scimago H
    index 13
Discussion papers
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 May 2019

Research article | 06 May 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Earth Surface Dynamics (ESurf).

Shallow landslides modeling using a particle finite element model with emphasis on landslide evolution

Liang Wang1, Xue Zhang2, and Stefano Tinti1 Liang Wang et al.
  • 1Dipartimento di Fisica e Astronomia (DIFA), Settore di Geofisca, Università di Bologna, Viale Berti Pichat 8, 40127
  • 2Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, UK

Abstract. Numerical modelling is a powerful tool to study the mechanism of landslides and constructs the foundation of many physically-based assessment methods applied to natural hazards. Usually, numerical analyses of landslides are carried out on the failure mechanism and on the propagation process separately. With the advantage of dealing with large deformation problems, the particle finite element method (PFEM), that is the particle extension of the traditional FEM, has the capability of simulating the entire evolution of the landslide from the generation to the deposition phase. To figure out the difference between a unified PFEM simulation and the usually adopted approaches that separate failure mechanism (static analysis) and run-out analysis (dynamic analysis), we implement a PFEM code that is applied first to a simple homogeneous slope model. Numerical results reveal that under the so-called critical condition the landslide comes to a stop with a slight modification of the original profile, while its profile is drastically changed if strength reduction is further applied. To test the capability of our model, we choose the 2013 Cà Mengoni landslide, northern Apennines, Italy, as a case study, since it behaved as if it were formed by homogeneous material. In virtue of the back-analysis of the run-out distance that we perform by using different material strength parameters, we show that the PFEM model is able to capture the variation of the observed landslide profile, and contributes to the understanding of the dynamics of the whole sliding process.

Liang Wang et al.
Interactive discussion
Status: open (until 17 Jun 2019)
Status: open (until 17 Jun 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Liang Wang et al.
Liang Wang et al.
Total article views: 178 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
140 38 0 178 0 0
  • HTML: 140
  • PDF: 38
  • XML: 0
  • Total: 178
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 06 May 2019)
Cumulative views and downloads (calculated since 06 May 2019)
Viewed (geographical distribution)  
Total article views: 155 (including HTML, PDF, and XML) Thereof 154 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
No saved metrics found.
No discussed metrics found.
Latest update: 22 May 2019
Publications Copernicus
Short summary
The capability of the present PFEM model has been validated against a historical event, i.e. 2013 Cà Mengoni landslide, Italy. we found that the multi-slip surface mechanism can be accounted for by our model. Indeed, the numerical results show that the slip-surface obtained by the dynamic analysis is different from the one obtained by static analysis, mainly due to the redistribution of stresses. We have shown that the weakening process is important to landslide behaviour during motion.
The capability of the present PFEM model has been validated against a historical event, i.e....