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Text S1: Topographic analysis 

To compare inter-catchment variability of river steepness indices, the referenced concavity index (θ) is typically 

fixed to a value of 0.45 (DiBiase et al., 2010). In this section we explore whether assuming a fixed value for the concavity 25 

index is consistent with the diversity of river forms in the Paute basin. Our analysis relies on Bayesian optimization of the 

mn-ratio as implemented in the TopoToolbox function mnoptim (see also 

https://topotoolbox.wordpress.com/2017/10/24/bayesian-optimization-of-the-mn-ratio/).  

The Paute river network is characterized by a major transient knickzone, situated close to the outlet of the basin (see 

main text for discussion). Including this knickzone in the mn-analysis would render the concavity to be significantly lower 30 

due to a major jump in the slope area profiles (Figure S3). It is known that there exists a positive trade-off between the 

concavity and the steepness of river profiles in transient regions (Vanacker et al., 2015). In order to facilitate the use of the 

stochastic stream power equation and ensure inter catchment comparability, we fixed the concavity to a value representative 

for the part of the river network being close to equilibrium. Therefore, we only considered the streams upstream of the two 

major knickzones in the Paute network, both likely originating from a major river reorganization in the recent geological past 35 

(<10 Ma Steinmann et al., 1999).  

The Bayesian optimization procedure is based on the integral approach of longitudinal river profile analysis (chi-

analysis) (Perron and Royden, 2013). Moreover, the optimization uses a cross-validation approach which randomly and 

repeatedly separates the drainage network into training and validation data. In one iteration, the mn -ratio is determined with 

the training data (~50% of the catchments) and is then evaluated with the remaining data (validation data) using the root mean 40 

squared error (RMSE). This approach is stochastic because at each iteration, different catchments are randomly selected. The 

RMSE for the same value of the concavity index may thus differ, which enables us to quantify the uncertainty of the optimal 

concavity. Bayesian optimization returns an optimal value of the 𝜃 = 0.42 and is consistent with the value of 0.45 which is 

commonly used when modelling stochastic river incision (DiBiase and Whipple, 2011; Scherler et al., 2017).  Uncertainty 

analysis (Figure S3) reveals that a range of mn-values between 0.35 and 0.5 is likely to result in equal model performance, 45 

further justifying adopting θ to 0.45 for the remainder of this study. 

Chi-plots of drainage network for all individual sub catchments studied in this paper are shown in Figure S4.  

Figure S5 illustrates the location of the digitized river sections to calibrate the river discharge-width relationship 

(main manuscript, Figure 3).  

  50 

https://topotoolbox.wordpress.com/2017/10/24/bayesian-optimization-of-the-mn-ratio/
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Table S1 Lithological erodibility index (LA) based on the age of the lithological unit 

  LA 

Cambrium 1 

Ordovicium 1.2 

Silurian 1.3 

Devonian 1.5 

Carboniferous 1.8 

Permian 2.5 

Permian/Triassic 2.6 

Triassic 2.7 

Triassic/Jurassic 3 

Jurassic 3.3 

Jurassic/Cretaceous 3.7 

Cretaceous 4.2 

Cretaceous/Paleogene 4.6 

Paleogene 5.2 

Paleogene/Neogene 5.5 

Neogene 5.8 

Neogene/Quaternary 5.9 

Quaternary 6 

 

Table S2 Lithological erodibility index (LL) per lithology, adjusted from on Aalto et al. (2006) 

Igneous LL Metamorphic LL Strong sedimentary LL Unconsolidated LL 

Adamellite 

2 

Gneiss 

2 

Limestone 

4 

Alluvial deposits 

12 

Diorite Amphibolite Massive greywacke Colluvial deposits 

Dolerite Chert Massive mudstone Estuarine deposits 

Diabase Migmatite Massive sandstone  Marine deposits 

Gabbro Serpentinite    Laterite 

Granite        

Granodiorite Metasedimentary  Weak sedimentary     

Granophyre Quartzite 2 Conglomerates 

10 

   

Ophiolite Meta lava 3 Pyroclastic    

Pegmatite Schist 
4 

Shale    

Porphyry  Slate Weathered sandstone   

Ultramafic   Loose volcanic deposits 12   

Andesite  

3 

      

Basaltic Lava 

Rocks 
   

 
  

Ignimbrite       

Nepheline       
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Table S3 Lithostratigraphic data 55 

See file “TableS3.xlsx” 

Table S4 Data PRECUPA 

See file “TableS4.xlsx”  
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Figure S1 Regionally constrained lithological erodibility index (LE) derived from the 1M geological map of Ecuador (Egüez 60 
et al., 2017) and applying Eq. 15, overlain on hillshade map based on the 30 m SRTM v3 DEM (NASA JPL, 2013).  
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Figure S2 PGA (g)  derived from Petersen et al. (2018) overlain on hillshade map based on the 30 m SRTM v3 DEM (NASA 

JPL, 2013). PGA data available through ScienceBase (doi: 10.5066/F7WM1BK1).  
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 65 

Figure S3: Constraining the concavity index of the Paute catchment using an objective function model. (a) River network 

with major knickpoints indicated as red diamonds, overlain on hillshade map based on the 30 m SRTM v3 DEM (NASA JPL, 

2013), (b) Longitudinal river profiles of the Paute drainage network. (c) Bayesian optimization of mn-ratio for the stream 

network upstream of the two major knickzones. 
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 70 

Figure S4: Chi-plots of drainage networks form studied sub-catchments. mn-value calculated using the chiplot function in 

TopoToolbox (Schwanghart and Scherler, 2014), assuming a critical drainage area of 0.5 km².   
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Figure S5:  Mapped river width for ca. 120 km of channels overlain on hillshade map based on the 30 m SRTM v3 DEM 

(NASA JPL, 2013).  75 
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