Early-mid Miocene erosion rates measured in pre-Dead Sea rift Hazeva River using cosmogenic 21Ne in fluvial chert pebbles

Michal Ben-Israel1, Ari Matmon1, Alan J. Hidy2, Yoav Avni3, Greg Balco4

1The Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
2Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
3Geological Survey of Israel, Yesha'yahu Leibowitz 32, Jerusalem, 96921 Israel
4Berkeley Geochronology Center, Berkeley, California 94709, USA

Correspondence to: Michal Ben-Israel (michal.benisrael@mail.huji.ac.il)

Abstract. The Miocene Hazeva River was a large fluvial system (estimated catchment size >100,000 km2) that drained the Arabian Plateau and Sinai Peninsula into the Mediterranean Sea during the Early-Mid Miocene. It was established after rifting of the Red Sea uplifted the Arabian Plateau during the Oligocene. Following late Miocene to early Pliocene subsidence along the Dead Sea Rift, the Hazeva drainage system was abandoned and dissected, resulting in new drainage divides on either side of the rift. We utilized a novel application of cosmogenic 21Ne measurements in chert to compare modern erosion rates with Miocene erosion rates that operated when the Hazeva River was active. We find that modern erosion rates derived from cosmogenic 21Ne, 26Al, and 10Be in exposed in situ chert nodules to be extremely slow, between 2–4 mm/kyr. Comparison between modern and paleo erosion rates, measured in chert pebbles, is not straightforward, as cosmogenic 21Ne was acquired partly during bedrock exhumation and partly during transport of these pebbles in the Hazeva River. However, even with bedrock erosion and maintained transport along this big river, 21Ne concentrations measured in Miocene cherts are lower (range between 3.66±1.9x106 and 8.97±1.39x106 atoms/g SiO$_2$) compared to 21Ne concentrations measured in the currently eroding chert nodules (8.08±1.48x106 and 12.10±2.43x106 atoms/g SiO$_2$). 21Ne concentrations in Miocene cherts correspond to minimum erosion rates that are at least twice as
fast as rates calculated today. We attribute these faster erosion rates to a combination of continuous uplift and significantly wetter climatic conditions during the Miocene.

1. Introduction

Tectonic and climatic conditions control geomorphological processes through surface uplift, rock weathering, and sediment generation and transport (e.g., Allen, 2008; Whipple, 2009; Whittaker, 2012). Fluvial systems and their associated sediment archives respond to and record changes in rates of continental uplift and climatic conditions as rates of erosion influence sediment production, transport, and storage (e.g., DiBiase and Whipple, 2011; Ferrier et al., 2013; Vance et al., 2003). Cosmogenic nuclides have long been applied to quantify such rates in diverse geological settings (e.g., Bierman, 1994; von Blanckenburg, 2005). However, the further back in time we go, the less information there is about rates of surface shaping processes. This is mostly due to decreasing preservation potential of older landscapes, as active surface processes destroy evidence of transient landscapes. Furthermore, even when geological circumstances do allow for the preservation of slowly eroding surfaces, erosion rates prior to the Pliocene cannot be quantified with the more commonly used cosmogenic radionuclides (10Be and 26Al) due to their half-lives (1.38 Myr and 716 kyr, accordingly; Ivy-Ochs and Kober, 2008). Stable cosmogenic nuclides have the potential to quantify rates of surface processes significantly older than commonly used cosmogenic radionuclides (Balco et al., 2019; Ben-Israel et al., 2018; Dunai et al., 2005; Libarkin et al., 2002; Sinclair et al., 2019). Here, we apply stable cosmogenic 21Ne to sediments deposited during the early-mid Miocene by a massive fluvial system that drained parts the Arabian Peninsula and Sinai into the Mediterranean prior to the subsidence of the Arava Valley along the Dead Sea transform (Garfunkel and Horowitz, 1966; Zilberman and Calvo, 2013). The rates of surface processes deduced from Miocene river sediments open a window into the tectonic and climatic regimes that dominated the region during this time.

2. Geological Background

The tectonic and magmatic events leading to the rifting of the Red Sea and the Gulf of Aden and the emergence of the Afar plume during the Oligocene (~35-30 Ma) triggered regional uplift (e.g., Bohannon et al., 1989; Bosworth et al., 2005; Omar and Steckler, 1995). During the last 20-30 Myr, the Arabian Peninsula has been uplifting from near sea level to its present elevation of ~1km...
(Bar et al., 2016; Wilson et al., 2014). As a result of widespread erosion following this uplift, a regional truncation surface developed in the northern Red Sea and the southern Levant and exposed older strata down to Precambrian formations depending on the preexisting structure (Avni et al., 2012). During the Miocene, the uplifted region was drained by a newly established fluvial system, termed the Hazeva River, which flowed northwestward from the uplifted terrains towards the Mediterranean Sea, and drained an estimated area >100,000 km² (Garfunkel and Horowitz, 1966; Zilberman and Calvo, 2013; Fig. 1).

At present, the mostly clastic sedimentary sequence deposited by this fluvial system is preserved mainly in structural lows, karstic systems, and abandoned stream valleys in southern Israel, eastern Sinai, and Jordan (Calvo and Bartov, 2001; Fig. 2). The sediments associated with this Miocene fluvial system compose the Hazeva formation in southern Israel. This formation is divided into two major parts, the lower includes autochthonous conglomerates and lacustrine carbonate units, and the upper part is comprised of allochthonous clastic units, mainly quartz sand and chert pebbles (Calvo, 2002). Here we focus on the allochthonous silicate sediments of the upper part. The onset of the Hazeva River is constrained by the Karak dike (~20 Myr) which intrudes the lower section of the Hazeva formation (Calvo and Bartov, 2001). The Hazeva fluvial system operated until the subsidence of the Dead Sea Rift during the late Miocene to early Pliocene brought on a dramatic change in morphology, which led to the dismantlement of this massive fluvial system, the last of its kind in the region (Garfunkel, 1981). By the early Pliocene, the Hazeva River was abandoned, and new independent drainage systems drained the region toward the Dead Sea Basin (Avni et al., 2001).

3. Methodology and Analytical Procedures

3.1 Sampling Strategy

Cosmogenic nuclides in sediments accumulate throughout the sedimentary cycle as near-surface material is exposed during weathering and exhumation of the source rock, during transport in a specific drainage system, and to a much lesser degree following burial at some intermediate or final destination. Unlike the more commonly used radioactive cosmogenic nuclides, which may decay substantially or even completely over multiple cycles, ^{21}Ne is stable. This means that the concentration of ^{21}Ne measured in the sediment may have accumulated over several sedimentary cycles, i.e., after the sediment reaches the depositional basin, sediment can be re-exhumed and
once again exposed and transported in a new sedimentary cycle. Therefore, the concentration of cosmogenic 21Ne measured in sediment represents total exposure during previous and current sedimentary cycles. This should hold true so long as intermittent burial does not expose the sediment to temperatures exceeding the geological closure temperature of Ne in quartz (90-100°C; Shuster and Farley, 2005), corresponding to ~2-3 km burial depth given a geothermal gradient of 30-50°C/km.

The upper part of the Hazeva formation contains a clastic sequence composed of two different silicate members that were exposed, eroded, and deposited at the same time. The first is sub-rounded monocrystalline quartz-arenite, eroded from Phanerozoic Nubian sandstone as well as from outcrops of Precambrian crystalline rocks of the Arabian-Nubian shield (Calvo and Bartov, 2001). The second member consists of well-rounded chert pebbles either interbedded with the quartz sand or forming horizons of pebbles in the sandy sequence (Zilberman and Calvo, 2013). The chert composing these pebbles is sourced only from east of the Dead Sea Rift, and therefore fluvial deposits on the west side containing this "imported chert" (Kolodny, 1965) must have been emplaced prior to rifting. The quartz sand and the chert pebbles were both transported by the Miocene Hazeva system and share an overall similar exposure history. However, the quartz sand was exposed in previous sedimentary cycles throughout the Mesozoic and Paleozoic where it accumulated cosmogenic 21Ne. In contrast, the chert was deposited in the Eocene and then exposed, transported, and buried during the Miocene (Avni et al., 2012). Therefore, while the cosmogenic 21Ne measured in the quartz sand represents multiple sedimentary cycles, the cosmogenic 21Ne measured in the chert pebbles represents erosion and transport during a single sedimentary cycle in the Miocene Hazeva River.

We collected and analyzed ten samples in total. Three samples of quartz sand (MHS1, MHS3, and MHS5) and five individual chert pebbles (MHC2, MHC23, MHC5a MHC2b, and MHC6) were obtained from two Miocene Hazeva deposits (Fig. 2 B-C; Table 1). At both sites, samples were collected from deeply shielded locations to minimize the effects of post-burial production. Two individual samples of in situ chert nodules (EJC3 and EJC5) were collected from exposed bedrock outcrops of the Eocene source rock in central Jordan (Fig. 2 A). Unlike the Miocene samples, which were exposed during at least one full sedimentary cycle, the modern chert nodules accumulated cosmogenic nuclides during exhumation to the modern surface. These concentrations thus represent averaged rates of surface denudation over the ~10^5 yr time-scales.
3.2 Preparation of Chert and Quartz Samples and Analytical Procedures

Chert and quartz samples were processed to separate clean SiO$_2$ at the Institute of Earth Sciences Cosmogenic Isotope Laboratory, Hebrew University of Jerusalem, following standard procedures (Hetzel et al., 2002; Kohl and Nishiizumi, 1992). The samples were first leached in HCl/HNO$_3$ mixture (3:1) at a temperature of 150°C for 1.5h dissolving carbonates and iron oxides. This procedure was followed by Franz magnetic separation to remove magnetic grains, including quartz grains that contain inclusions of magnetic material. Samples were then leached three times in a 1% HF/HNO$_3$ mixture for 7, 12 and 24h at 70°C, removing the outer rims of the quartz grains. Aliquots of all 10 etched samples were then analyzed for Ne isotopes at the Berkeley Geochronology Center. Chert samples were washed with isopropanol to remove fine chert particles attached to the chert grains. Aliquots from samples MCH5A and EJC5 were crushed to compare the degassing results with the uncrushed aliquots. Ca. 70 mg from the chert samples and ca. 150 mg from the quartz samples were encapsulated in a tantalum packet and heated under vacuum using a diode laser micro-furnace at 2-4 heating steps between 450 and 1250°C for 15 minutes at each temperature step. Ne isotope measurements used the BGC "Ohio" system and the procedure described in Balco et al., (2019). 20-30 grams of leached and clean quartz from three quartz samples and three chert samples were processed to separate Be and Al oxides following Kohl and Nishiizumi (1992) and Bierman and Caffee (2001). These were then analyzed for 10Be/9Be and 26Al/27Al at the Centre for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory and calibrated against house standards and blanks.

4. Results

4.1 21Ne in Quartz Sand and Cherts

For the chert samples, <2% of the total 21Ne and no more than 1% of the total 20Ne measured were released above 950°C (see the Supplementary Tables S1-4), therefore subsequent analyses were performed at 450, 700, and 950°C heating steps for chert samples and 950 and 1250°C heating steps for quartz samples (Table 1). Of the total 21Ne measured, >85% was released at the low-temperature steps, below the 950°C step in the chert samples and below the 1250°C step in the quartz samples (see Supplementary Tables S1-4). Also, low-temperature 21Ne/20Ne and 22Ne/20Ne ratios fall on the spallation line, within analytical uncertainty. Therefore, we conclude that excess 21Ne relative to an atmospheric isotopic 21Ne/20Ne ratio of 0.002959 (21Ne$_{ex}$) in the low-
temperature steps is a good representation for cosmogenic 21Ne (21Ne$_{cos}$; see Supplementary Fig. S8-12). While most samples show some increase in the low-temperature 21Ne$_{ex}$, sample MHC2 shows no enrichment in 21Ne/20Ne ratio and very little enrichment in 22Ne/20Ne ratio compared to atmospheric composition in the low-temperature steps. In the 950°C step, there is enrichment compared to atmospheric values. However, as only ~12% of the total 21Ne was released in the 950°C step, determining the concentration of cosmogenic 21Ne in sample MHC2 is beyond analytical abilities. Therefore, this sample was not considered in further calculations, discussion, and interpretations. It is important to note that even with cosmogenic isotopic values of 21Ne/20Ne and 22Ne/20Ne ratios at the low-temperature steps, distinguishing the cosmogenic component of 21Ne$_{ex}$ from the nucleogenic component, produced by the decay of U and Th within the crystal lattice, is not trivial. Nonetheless, as all chert samples (Eocene chert nodules and Miocene chert pebbles) share the same lithology, any differences in the 21Ne$_{ex}$ concentrations must be due to the cosmogenic component.

The chert pebbles and quartz sands sampled at both Miocene Hazeva sites show variable concentrations of 21Ne$_{cos}$ ranging between $0.00\pm1.88\cdot10^6$ and $8.89\pm1.83\cdot10^6$ atoms/g SiO$_2$ (Fig. 3). At both Miocene Hazeva sites, the cosmogenic 21Ne concentrations measured in chert pebbles are similar or lower compared to sand samples. These measured concentrations agree with our understanding that the sand samples contain quartz grains that originated from various sandy units that were deposited throughout the Phanerozoic and could have undergone several sedimentary cycles before they were exhumed and transported by the Miocene fluvial system. Alternatively, the sand samples could have higher concentrations of nucleogenic 21Ne as the source rock for this sand is >800 Ma (Kolodner et al., 2009). Conversely, the chert samples are derived from a relatively young, Eocene, source rock, and only participated in one sedimentary cycle during the Miocene. The chert nodule samples collected from in situ Eocene outcrops show higher cosmogenic 21Ne concentrations compared to the Miocene chert pebbles (Fig 3).

4.2 10Be and 26Al in Quartz Sand and Cherts

10Be and 26Al concentrations were measured in three Miocene sand samples (MHS1, MHS3, and MHS5), the two Eocene chert nodules (EJC3 and EJC5) and two chert pebbles (MHC5b and MHC6). 10Be results for sample MHC5b and 26Al results for sample MHS1 are not available (Table 1). Miocene sand and chert samples show 10Be and 26Al that are low and consistent with extended periods of burial ($\leq0.39\pm0.03\cdot10^5$ atoms/g SiO$_2$ for 10Be and $\leq4.33\pm0.55\cdot10^5$ atoms/g SiO$_2$ for...
Currently eroding Eocene nodules show higher concentrations of \(^{10}\)Be and \(^{26}\)Al with sample EJC3 showing \(^{26}\)Al/\(^{10}\)Be ratio that is consistent with production at the surface, and sample EJC5 showing a lower \(^{26}\)Al/\(^{10}\)Be ratio, suggesting a more complicated exposure history (see Discussion section).

5. DISCUSSION

5.1 Correcting for Post-Burial Muonic Produced Cosmogenic \(^{21}\)Ne

When examining concentrations of cosmogenic nuclides in sediments that have been buried for extended periods, post-burial production needs to be considered. At or near the surface, spallation interactions are the main pathway for in situ production of cosmogenic nuclides accounting for \(>95\%\) for \(^{26}\)Al, \(^{10}\)Be, and \(^{21}\)Ne (Dunai, 2010). However, the relative contribution of production by muon interactions increases with burial depth, and while production rates are relatively low, they can be significant when integrated over long periods of time—especially for stable nuclides. The post-burial component does not represent surface processes, and therefore, it is crucial to account for its contribution to the measured cosmogenic component. For radioactive cosmogenic nuclides, such as \(^{10}\)Be and \(^{26}\)Al, their initial concentrations (acquired during exposure) decrease post burial due to radioactive decay, with \(^{26}\)Al decreasing faster than \(^{10}\)Be according to their corresponding half-lives (e.g., Balco and Rovey, 2008; Granger, 2006; Granger and Muzikar, 2001; Lal, 1991).

We calculated the expected concentrations of cosmogenic \(^{26}\)Al, \(^{10}\)Be, and \(^{21}\)Ne in sediments over a burial period of 18 Myr, the likely age of the fluvial system stabilization (Bar and Zilberman, 2016). We then compared these calculated concentrations to the measured concentrations of \(^{26}\)Al, \(^{10}\)Be, and \(^{21}\)Ne\(_{\cos}\) in Miocene chert and sand samples (Fig. 4). Both \(^{10}\)Be and \(^{26}\)Al measurements are only available for two buried sand samples, one buried chert pebble, and two in situ chert nodules (Table 1). The measured \(^{10}\)Be and \(^{26}\)Al concentrations have reached equilibrium that is consistent with an extended period of burial at depths between 20-120 m (given that overburden consists of clastic sediments with a density of \(\sim 2\ g/cm^3\)).

The discrepancy between the current burial depth, only tens of meters below the surface, and the deduced burial depth is likely the result of surface erosion that occurred during the last \(\sim 2\) Myr (Matmon and Zilberman, 2017 and references therein). Additionally, the relatively large uncertainty on muogenic production rates could account for some of this discrepancy (Balco, 2017; Balco et al., 2019). The cosmogenic \(^{21}\)Ne produced post-burial over 18 Ma of burial at depths between 20-120 m is lower than measured for
the presented samples, accounting for a maximum of $\sim 1.3 \cdot 10^6$ atoms/g SiO$_2$. This concentration is lower than the analytical uncertainty for all measured Miocene samples except for MHC2, where no cosmogenic 21Ne was measured. However, sample MHC2 is not considered in the interpretations of the results.

5.2 Calculating Modern and Miocene Rates of Surface Processes

Erosion rates calculated from cosmogenic 21Ne concentrations measured in modern in situ chert nodules from the Jordanian Central Plateau (EJC3 and EJC5) range between 2-3 mm/kyr. Erosion rates calculated from 10Be and 26Al concentration measured in sample EJC5 are similar, 2-4 mm/kyr, with production rates scaled for latitude and altitude after Stone (2000), using production rates of 2.62 and 30.26 atoms/g SiO$_2$ year for 10Be and 26Al, respectively. In contrast, erosion rates calculated from 10Be and 26Al concentrations measured in sample EJC3 are 40-50 mm/kyr, an order of magnitude faster. While we cannot explain this discrepancy, we believe that the representative results are the slower erosion rates. Firstly, the 21Ne calculated erosion rates in sample EJC3 (~2 mm/kyr) agrees with the 21Ne, 26Al, and 10Be calculated erosion rates for sample EJC5. Secondly, modern erosion rates measured in chert bedrock in other hyperarid regions of eastern Mediterranean area also indicate rates of erosion that range between 1-5 mm/kyr (Boroda et al., 2013; Matmon et al., 2009; Matmon and Zilberman, 2016). We conclude that 21Ne concentrations in modern Jordanian Central Plateau chert nodules indicate simple exposure times that range between 269±49 and 378±76 kyr, and equivalent erosion rates that range between 2-4 mm/kyr. It is important to note that modern calculated exposure times and erosion rates in the Jordanian cherts represent exhumation only.

Quantifying rates of surface processes that occurred during the Miocene using cosmogenic 21Ne concentrations is not trivial, most notably due to the challenge in evaluating the local isotope production rates. As the latitude of the Arabian Peninsula during the early Miocene was similar to today (Meulenkamp and Sissingh, 2003 and references therein), the observed differences in cosmogenic 21Ne concentrations between Miocene and modern chert samples can be equally explained by doubling the erosion rates during the Miocene or a 1 km difference in source elevation. It is not possible to determine with certainty what the elevation of the Jordanian Central Plateau was during the Miocene. However, the Arabian Peninsula was mostly submerged below sea level from the Late Cretaceous to the early Oligocene when uplift and exhumation began with the rifting of the Red Sea (Bohannon et al., 1989; Kohn and Eyal, 1981; Omar and Steckler, 1995).
Recent studies show that uplift and exhumation commenced 21-25 Ma and decreased significantly at ~18 Ma, reaching maximal elevations of ~2.5 km along the flanks of the Suez Rift (e.g., Bar et al., 2016; Morag et al., 2019). Still, the rate and history of uplift of the Arabian Peninsula are not as well constrained. Recently, Wilson et al. (2014) proposed that the western half of the Arabian Peninsula experienced significant regional uplift during the last 25-30 Ma at rates of up to 0.1 mm/yr with topography initially forming in Yemen and slowly migrating northward. At present, the mean elevation of the Jordanian Central Plateau is ~1 km (Fig. 2). Taking into consideration the reported rates and timing of uplift it is reasonable to presume that the western flank of the Arabian Peninsula reached its current elevation before the initiation of the Miocene Hazeva fluvial system at ~18 Ma. Furthermore, during the early Miocene, broad valleys (500-1000 m wide and ~100 m deep) incised the regional truncation surface that developed in the region during the Oligocene (Avni et al., 2012). The incision of these valleys, where the Hazeva formation was later deposited, suggests that significant uplift occurred prior to the deposition of fluvial sediments by the Hazeva River. Therefore, we assume an elevation of 1 km and latitude of 20-30° when for Miocene production rates, when calculating exposure times and erosion rates. The calculated exposure times of sediments in the Miocene Hazeva fluvial system are variable, and range between 63±63 and 179±63 kyr (Fig. 3). As previously mentioned, the measured cosmogenic \(^{21}\text{Ne}\) in the Miocene chert pebbles represents the total time of exposure during exhumation from bedrock coupled with transport in the Hazeva River. The calculated exposure times are equivalent to minimal erosion rates of ~4-12 mm/kyr, at least twice as fast than those occurring today. Thus, the actual bedrock erosion rates during the Miocene would have been significantly faster than modern rates mentioned above.

5.3 Climatic and Tectonic Controls on Miocene Erosion Rates

The increased erosion rates, compared to modern, inferred from Miocene chert pebbles are the consequence of the environmental conditions that prevailed at that time. An increase in rates of surface erosion is most commonly attributed to perturbations in fluvial basins in response to tectonic uplift and/or warmer/wetter climatic conditions (e.g., DiBiase and Whipple, 2011; Romans et al., 2016; Schaller and Ehlers, 2006; Val et al., 2016; Willenbring et al., 2013). For example, increased precipitation brings about higher river discharge and enhancement of the stream power available for bedrock erosion and sediment transport. Erosion rates in fluvial systems
also respond to tectonically induced changes in base level that increase slope steepness and instability, resulting in higher stream power and more sediment readily available for transport. Here we examine evidence from previous studies of the climatic and tectonic conditions that prevailed in the region during the Miocene, capable of forcing the deduced rapid erosion rates. However, when examining ancient erosion rates, we must first consider the time-scales over which cosmogenic nuclides are averaged. The question arises whether the reported erosion rates accurately represent the environmental conditions of a certain period (e.g. the early to mid-Miocene) or if the calculated rates are the result of episodic oscillation or catastrophic geomorphic events. For the modern erosion rates reported here, it is a reasonably simple answer. The modern erosion rates are relatively slow and so they integrate hundreds of thousands of years over which such oscillations or rare catastrophic events would be averaged. As for the Miocene erosion rates, samples were collected from two separate sites and from different depths, so it is unlikely that they all represent the exception. We, therefore, consider the range of rates obtained from Miocene samples to be a good representation for Miocene surface processes.

Many works which quantify the rates and timing of uplift related to the riftin of the Red Sea are confined to the edges of the Arabian plate and do not give good constrains for intercontinental uplift (Bar et al., 2016; Morag et al., 2019; Omar et al., 1989; Omar and Steckler, 1995). Collectively, these studies show a decrease in exhumation rates during the mid-Miocene (~18 Myr). While uplift rates decreased during the Miocene, tectonic uplift and topographic changes could still drive large-scale landscape response, manifesting as increased erosion rates and the establishment of the Hazeva fluvial system.

In addition to tectonic forcing, there is ample evidence for a warmer and wetter climate in the region during the Miocene. Locally, the appearance of mammals in the Negev along with arboreal and grassy vegetation during the early-mid Miocene supports a humid environment (Goldsmith et al., 1988; Horowitz, 2002; Tchernov et al., 1987). Tropical to subtropical climate prevailed in the eastern Arabian Peninsula, as indicated by fossilized mangrove roots (Whybrow and McClure, 1980). Locally, Kolodny et al. (2009), interpreted the \(^{18}O\) in lacustrine limestone from the lower part of the Hazeva unit to be deposited by \(^{18}O\)-depleted paleo-meteoric water. They proposed that the presence of a warm ocean to the southeast of the region during the Late Oligocene-Early Miocene resulted in tropical cyclones being more prevalent and increasing rainfall in the region.
Together, the above observations suggest climatic conditions that could promote erosion rates which are faster than those observed in hyperarid conditions (such as prevail today) and could also support and maintain the existence of a great fluvial system, such as the Hazeva River, during the Miocene.

6. Conclusions

We compared the cosmogenic 21Ne measured in chert pebbles and quartz sand eroded and transported during the mid-Miocene (~18 Myr) by the Hazeva River with the chert source rock (Eocene chert nodules) currently eroding in the Central Jordanian Plateau. We successfully established a novel application for measuring cosmogenic 21Ne in modern and Miocene chert samples, expanding the opportunities and settings in which stable cosmogenic nuclides analysis could be used as a tool to quantify geomorphic processes and ascertaining chert as a viable lithologic target for cosmogenic Ne analysis. In modern samples, measurements of cosmogenic nuclides 10Be and 26Al generally agree with 21Ne results. In the Miocene samples, cosmogenic 21Ne in quartz sand samples is equal or higher compared to Miocene chert pebbles, agreeing with the geologic understanding that sand has experienced several sedimentary cycles where 21Ne was produced, while chert experienced only one such cycle in the Miocene Hazeva fluvial system. Exposure times calculated from the measured cosmogenic 21Ne concentrations in the Miocene chert pebbles are considerably shorter compared to the chert nodules currently eroding in the Central Jordanian Plateau. While, it is impossible to determine the exact rate of erosion during the Miocene as cosmogenic 21Ne was produced both during erosion from the bedrock and transport in the river, the shorter exposure times during the Miocene reflect faster rates of surface processes that correlate to minimal erosion rates that are at least twice as fast. The cause for increased rates of surface processes during the Miocene cannot be easily constrained to either tectonic or climatic conditions. The entire region experienced tectonic uplift and exhumation that while decreasing during the Mid-Miocene brought on topographic changes that established the Hazeva fluvial system and could have been manifested as faster rates of surface erosion. Furthermore, multiple independent proxies presented in previous studies support wetter climatic conditions in the region during the early-mid Miocene. Increased precipitation would explain the faster rates of bedrock erosion deduced as well as the higher water discharge needed to maintain transport along the
Hazeva River. While it is possible that rates of erosion or it changed significantly throughout the Miocene, the variability in ^{21}Ne concentrations measured in Miocene chert samples are more likely the result of fluvial transport dynamics, temporary storage, and exposure during transport in this large Miocene river.

Data availability

A raw data table including all Ne isotope measurements and three-isotope plots are available in supplement.

Author contribution

MBI and AM designed the study. MBI collected the samples for analysis with assistance from AM and YA. MBI prepared samples for analyses and measured $^{21}\text{Ne}/^{20}\text{Ne}$ and $^{22}\text{Ne}/^{20}\text{Ne}$ ratios with GB, and AJH measured the $^{10}\text{Be}/^{9}\text{Be}$ and $^{26}\text{Al}/^{27}\text{Al}$ ratios. MBI analyzed the data, produced the figures, and prepared the manuscript with contributions from all co-authors.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

This work was funded by the Israel Science Foundation (ISF grant number 385/14 to AM) and further supported by the United States-Israel Binational Science Foundation (BSF travel grant T-2017229 to MBI). Our gratitude to Y. Geller, O. Tirosh, and Y. Burstyn for laboratory and field assistance. MBI would like to thank the technical and administrative staff at the Berkeley Geochronology Center for their assistance and support. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory, United States under Contract DE-AC52-07NA27344. This is LLNL-JRNL-788357.

References

Allen, P. A.: From landscapes into geological history, Nature, 451(7176), 274–276,

Ferrier, K. L., Huppert, K. L. and Perron, J. T.: Climatic control of bedrock river incision,

Kolodny, Y.: The lithostratigraphy and petrology of the Mishash chert Formation, The Hebrew University, Jerusalem., 1965.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Type</th>
<th>Site</th>
<th>Sampling depth below surface (m)</th>
<th>Location</th>
<th>Elevation (m.a.s.l)</th>
<th>Be Carrier</th>
<th>10Be/9Be</th>
<th>10Be</th>
<th>26Al/27Al</th>
<th>[Al]*</th>
<th>26Al</th>
<th>Al/Be</th>
<th>21Ne cos †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHS1</td>
<td>Quartz sand</td>
<td>Paran Valley, Israel</td>
<td>30</td>
<td>30.33296</td>
<td>34.92724</td>
<td>290</td>
<td>178</td>
<td>0.17±0.03</td>
<td>0.14±0.02</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.66±1.91</td>
</tr>
<tr>
<td>MHS3</td>
<td>Quartz sand</td>
<td>Arad Quarry, Israel</td>
<td>90</td>
<td>31.23372</td>
<td>35.20685</td>
<td>570</td>
<td>176</td>
<td>0.36±0.02</td>
<td>0.29±0.02</td>
<td>0.60±0.08</td>
<td>1.33±0.17</td>
<td>4.57±0.64</td>
<td>8.97±1.39</td>
</tr>
<tr>
<td>MHS5</td>
<td>Quartz sand</td>
<td>Arad Quarry, Israel</td>
<td>100</td>
<td>31.23372</td>
<td>35.20685</td>
<td>570</td>
<td>171</td>
<td>0.32±0.02</td>
<td>0.26±0.02</td>
<td>0.35±0.04</td>
<td>0.86±0.11</td>
<td>3.25±0.44</td>
<td>8.89±1.83</td>
</tr>
<tr>
<td>MHC2</td>
<td>Chert pebble</td>
<td>Paran Valley, Israel</td>
<td>20</td>
<td>30.33296</td>
<td>34.92724</td>
<td>290</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>MHC3</td>
<td>Chert pebble</td>
<td>Arad Quarry, Israel</td>
<td>90</td>
<td>31.23372</td>
<td>35.20685</td>
<td>570</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>5.33±2.49</td>
</tr>
<tr>
<td>MHC5a</td>
<td>Chert pebble</td>
<td>Arad Quarry, Israel</td>
<td>100</td>
<td>31.23372</td>
<td>35.20685</td>
<td>570</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2.91±1.72</td>
</tr>
<tr>
<td>MHC5b</td>
<td>Chert pebble</td>
<td>Arad Quarry, Israel</td>
<td>100</td>
<td>31.23372</td>
<td>35.20685</td>
<td>570</td>
<td>180</td>
<td>NA</td>
<td>0.93±0.12</td>
<td>203</td>
<td>4.33±0.55</td>
<td>NA</td>
<td>0.00±1.88</td>
</tr>
<tr>
<td>MHC6</td>
<td>Chert pebble</td>
<td>Paran Valley, Israel</td>
<td>30</td>
<td>30.33296</td>
<td>34.92724</td>
<td>290</td>
<td>172</td>
<td>0.10±0.01</td>
<td>0.39±0.03</td>
<td>0.05±0.02</td>
<td>287</td>
<td>0.32±0.13</td>
<td>3.87±2.24</td>
</tr>
<tr>
<td>EJC3</td>
<td>In situ chert</td>
<td>Central Jordanian Plateau</td>
<td>Surface</td>
<td>30.97045</td>
<td>36.64469</td>
<td>910</td>
<td>170</td>
<td>0.70±0.03</td>
<td>1.13±0.05</td>
<td>1.50±0.10</td>
<td>230</td>
<td>6.81±0.43</td>
<td>5.11±0.38</td>
</tr>
<tr>
<td>EJC5</td>
<td>In situ chert</td>
<td>Central Jordanian Plateau</td>
<td>Surface</td>
<td>30.87181</td>
<td>36.52129</td>
<td>1000</td>
<td>172</td>
<td>18.43±0.30</td>
<td>29.75±0.49</td>
<td>11.47±0.25</td>
<td>235</td>
<td>72.96±1.54</td>
<td>2.45±0.07</td>
</tr>
</tbody>
</table>

Note: NA – not available. Samples were either not analyzed, or no result was attained.

* Measurement uncertainties are ~5%.

† Cosmogenic 21Ne is the excess of 21Ne concentrations relative to the atmospheric 21Ne/20Ne ratio, calculated for the low-temperature steps (<950°C for chert and <1250°C for quartz).
Figure 1. Paleo-geographic map of the eastern Levant during the early Miocene (modified after Meulenkamp and Sissingh, 2003) with the approximated extent of the Hazeva fluvial system (based on Avni et al., 2012; Zilberman and Calvo, 2013).
Figure 2. (A) Shaded relief map of the study area with sampling locations of Miocene fluvial sediments sites (red) and in situ Eocene source rock (blue). Hazeva outcrops are after Zilberman and Calvo (2013). Inset map shows regional geographical context. (B) Sampling location at Paran Valley. Sample collected from behind the fallen boulder in a narrow canyon and underneath an overburden of ~50 meters of sand and conglomerate. (C) Photo of sampling location at Arad Quarry. Samples collected from underneath an overburden of ~100 meters of quartz sand.
Figure 3. $^{21}\text{Ne}_{\text{ex}}$ concentrations in Hazeva sands (yellow), Hazeva chert pebbles (red), and in situ Jordanian Central Plateau chert nodules (blue) with respective uncertainties. Exposure ages, reported in kyr, are calculated using production rates scaled for latitude and altitude after Stone (2000), using ^{21}Ne production rate of 18.1 atoms/g SiO$_2$ year (Borchers et al., 2016; Luna et al., 2018).
Figure 4. Measured concentrations of 10Be (red), 26Al (blue), and 21Ne (green) in samples MHS3, MHS5, and MHC6. Grey contour lines show changes in nuclide concentrations with time at different depths from 20 to 120 m below the surface in 5m increments. For both sand samples and chert sample, the concentrations of cosmogenic 21Ne are higher than the estimated post burial production. Production by cosmic-ray muons is calculated with schematics presented by Balco (2007). Production rates by cosmic-ray muons of 10Be and 26Al are after Balco (2017) and of 21Ne by fast muons is after Balco et al. (2019). This shows that 10Be and 26Al concentrations can be explained by post-burial production, but 21Ne concentrations cannot, so a significant fraction of cosmogenic 21Ne is pre-burial.